Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 25 trang 99 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho hai đường thẳng (a) và (b) song song với nhau, mặt phẳng
Đề bài
Cho hai đường thẳng \(a\) và \(b\) song song với nhau, mặt phẳng \(\left( P \right)\) cắt \(a\) sao cho góc giữa đường thẳng \(a\) và mặt phẳng \(\left( P \right)\) bằng \(\varphi \) \(\left( {{0^o} < \varphi < {{90}^o}} \right)\). Khi đó, góc giữa đường thẳng \(b\) và mặt phẳng \(\left( P \right)\) bằng:
A. \({90^o} - \varphi \)
B. \(\varphi \)
C. \({90^o} + \varphi \)
D. \({180^o} - \varphi \)
Phương pháp giải - Xem chi tiết
Gọi \(a'\) và \(b'\) lần lượt là hình chiếu của \(a\) và \(b\) trên mặt phẳng \(\left( P \right)\). Khi đó góc giữa \(a\) và \(\left( P \right)\) chính là góc giữa \(a\) và \(a'\), góc giữa \(b\) và \(\left( P \right)\) chính là góc giữa \(b\) và \(b'\). Tính góc giữa \(b\) và \(b'\).
Lời giải chi tiết
Gọi \(a'\) và \(b'\) lần lượt là hình chiếu của \(a\) và \(b\) trên mặt phẳng \(\left( P \right)\). Khi đó góc giữa \(a\) và \(\left( P \right)\) chính là góc giữa \(a\) và \(a'\), góc giữa \(b\) và \(\left( P \right)\) chính là góc giữa \(b\) và \(b'\).
Gọi \(A\) và \(B\) lần lượt là giao điểm của \(a\) và \(b\) trên mặt phẳng \(\left( P \right)\). Hiển nhiên ta có \(A \in a'\) và \(B \in b'\).
Trên hình vẽ, góc giữa \(a\) và \(a'\) là góc \(\widehat {{A_1}}\), góc giữa \(b\) và \(b'\) là góc \(\widehat {{B_1}}\). Dễ thấy rằng \(\widehat {{A_1}} = \widehat {{B_1}}\), nên góc giữa \(b\) và \(\left( P \right)\) cũng chính bằng góc giữa \(a\) và \(\left( P \right)\), và bằng \(\varphi \).
Đáp án đúng là B.
Bài 25 trang 99 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về phép biến hình. Bài tập này tập trung vào việc vận dụng các kiến thức về phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm để giải quyết các bài toán thực tế. Việc nắm vững các kiến thức này là vô cùng quan trọng để hiểu sâu hơn về hình học không gian và các ứng dụng của nó.
Bài 25 bao gồm các dạng bài tập sau:
Cho điểm A(1; 2) và phép tịnh tiến theo vectơ v = (3; -1). Tìm ảnh A' của điểm A qua phép tịnh tiến đó.
Lời giải:
Áp dụng công thức phép tịnh tiến: A'(x' ; y') = A(x; y) + v(a; b) = (x + a; y + b)
Vậy A'(1 + 3; 2 - 1) = A'(4; 1)
Cho đường thẳng d: x + 2y - 3 = 0 và phép quay Q(O, 90°) quanh gốc tọa độ O. Tìm ảnh d' của đường thẳng d qua phép quay Q.
Lời giải:
Chọn hai điểm A(1; 1) và B(3; 0) thuộc đường thẳng d. Tìm ảnh A' và B' của A và B qua phép quay Q.
A'(x'; y') = A(-y; x) = (-1; 1)
B'(x'; y') = B(-y; x) = (0; 3)
Phương trình đường thẳng d' đi qua A' và B' là: (y - 1) / (3 - 1) = (x + 1) / (0 + 1) => y - 1 = 2(x + 1) => y - 1 = 2x + 2 => 2x - y + 3 = 0
Cho hai điểm A(2; 3) và B(5; 1). Tìm phương trình đường thẳng d là trục đối xứng của đoạn thẳng AB.
Lời giải:
Đường thẳng d là đường trung trực của đoạn thẳng AB. Tìm trung điểm I của AB:
I((2 + 5) / 2; (3 + 1) / 2) = I(3.5; 2)
Tìm hệ số góc của AB: k = (1 - 3) / (5 - 2) = -2/3
Hệ số góc của đường thẳng d là k' = -1/k = 3/2
Phương trình đường thẳng d: y - 2 = (3/2)(x - 3.5) => y - 2 = (3/2)x - 5.25 => y = (3/2)x - 3.25
Sách giáo khoa Toán 11 - Cánh Diều
Sách bài tập Toán 11 - Cánh Diều
Các trang web học Toán online uy tín
Hy vọng bài giải chi tiết bài 25 trang 99 sách bài tập Toán 11 Cánh Diều này sẽ giúp bạn hiểu rõ hơn về các phép biến hình và tự tin hơn trong việc giải các bài tập tương tự. Chúc bạn học tập tốt!