Logo Header
  1. Môn Toán
  2. Giải bài 26 trang 21 sách bài tập toán 11 - Cánh diều

Giải bài 26 trang 21 sách bài tập toán 11 - Cánh diều

Giải bài 26 trang 21 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 26 trang 21 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 26 trang 21 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Cho n là số nguyên dương lớn hơn 2. Chọn ngẫu nhiên hai số nguyên dương từ tập hợp\(\left\{ {1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}...;{\rm{ }}2n;{\rm{ }}2n{\rm{ }} + {\rm{ }}1} \right\}.\)

Đề bài

Cho n là số nguyên dương lớn hơn 2. Chọn ngẫu nhiên hai số nguyên dương từ tập hợp\(\left\{ {1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}...;{\rm{ }}2n;{\rm{ }}2n{\rm{ }} + {\rm{ }}1} \right\}.\) Tính xác suất để hai số được chọn có tích là số chẵn.

Phương pháp giải - Xem chi tiếtGiải bài 26 trang 21 sách bài tập toán 11 - Cánh diều 1

- Xác định số phần tử của không gian mẫu.

- Xác định số phần tử của biến cố.

Lời giải chi tiết

Ta thấy từ tập hợp\(\left\{ {1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}...;{\rm{ }}2n;{\rm{ }}2n{\rm{ + }}1} \right\}\) có \(2n{\rm{ }} - {\rm{ }}1\) số nguyên dương lớn hơn 2. Mỗi cách chọn ngẫu nhiên hai số nguyên dương từ \(2n{\rm{ }} - {\rm{ }}1\) số nguyên dương cho ta một tổ hợp chập 2 của \(2n{\rm{ }} - {\rm{ }}1\) phần tử. Do đó, không gian mẫu Ω gồm các phần tử chập 2 của \(2n{\rm{ }} - {\rm{ }}1\) phần tử và:

\(n\left( \Omega \right) = C_{2n - 1}^2 = \frac{{\left( {2n - 1} \right)!}}{{2!\left( {2n - 3} \right)!}} = \frac{{\left( {2n - 1} \right)\left( {2n - 2} \right)}}{2} = \left( {2n - 1} \right)\left( {n - 1} \right).\)

Xét biến cố A: “Hai số được chọn có tích là số chẵn”.

Suy ra biến cố \(\bar A\): “Hai số được chọn có tích là số lẻ”.

Ta thấy hai số được chọn có tích là số lẻ khi và chỉ khi cả hai số đó đều là số lẻ.

Trong \(2n{\rm{ }} - {\rm{ }}1\) số nguyên dương lớn hơn 2 thì có \(n\) số nguyên dương lẻ.

Do đó, số các kết quả thuận lợi cho biến cố \(\bar A\) là:

 \(n\left( {\bar A} \right) = C_n^2 = \frac{{n!}}{{2!\left( {n - 2} \right)!}} = \frac{{n\left( {n - 1} \right)}}{2}.\)

Xác suất của biến cố \(\bar A\) là: \(P\left( {\bar A} \right) = \frac{{n\left( {\bar A} \right)}}{{n\left( \Omega \right)}} = \frac{{\frac{{n\left( {n - 1} \right)}}{2}}}{{\left( {2n - 1} \right)\left( {n - 1} \right)}} = \frac{n}{{2\left( {2n - 1} \right)}}.\)

Suy ra xác suất của biến cố \(A\) là: \(P\left( A \right) = 1 - P\left( {\bar A} \right) = 1 - \frac{n}{{2\left( {2n - 1} \right)}} = \frac{{3n - 2}}{{2\left( {2n - 1} \right)}}.\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 26 trang 21 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng soạn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 26 trang 21 Sách bài tập Toán 11 - Cánh Diều: Chi tiết và Dễ Hiểu

Bài 26 trang 21 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường tập trung vào việc xác định tập xác định, tập giá trị, tính đơn điệu và các tính chất khác của hàm số lượng giác. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững kiến thức về:

  • Định nghĩa hàm số lượng giác: Sin, cosin, tang, cotang và các hàm lượng giác khác.
  • Tập xác định của hàm số lượng giác: Các giá trị của x mà hàm số có nghĩa.
  • Tập giá trị của hàm số lượng giác: Các giá trị mà hàm số có thể nhận được.
  • Tính đơn điệu của hàm số lượng giác: Hàm số tăng hay giảm trên một khoảng nào đó.
  • Các tính chất khác của hàm số lượng giác: Chu kỳ, tính chẵn lẻ, v.v.

Phân tích bài toán và phương pháp giải

Trước khi bắt tay vào giải bài tập, hãy đọc kỹ đề bài và xác định rõ yêu cầu. Sau đó, hãy phân tích bài toán để tìm ra phương pháp giải phù hợp. Một số phương pháp thường được sử dụng để giải bài tập về hàm số lượng giác bao gồm:

  • Sử dụng định nghĩa hàm số lượng giác: Tính giá trị của hàm số tại một điểm cho trước.
  • Sử dụng các công thức lượng giác: Biến đổi biểu thức để đơn giản hóa bài toán.
  • Sử dụng đồ thị hàm số lượng giác: Xác định tập xác định, tập giá trị và tính đơn điệu của hàm số.
  • Sử dụng phương pháp xét hàm số: Tìm cực trị và khoảng đơn điệu của hàm số.

Lời giải chi tiết bài 26 trang 21 Sách bài tập Toán 11 - Cánh Diều

(Ở đây sẽ là lời giải chi tiết cho từng câu hỏi của bài 26, trang 21. Ví dụ:)

Câu a: Xác định tập xác định của hàm số y = sin(x) + cos(x).Giải: Hàm số sin(x) và cos(x) có tập xác định là R. Do đó, tập xác định của hàm số y = sin(x) + cos(x) là R.

Câu b: Tìm tập giá trị của hàm số y = 2sin(x) - 1.Giải: Vì -1 ≤ sin(x) ≤ 1, nên -2 ≤ 2sin(x) ≤ 2. Suy ra -3 ≤ 2sin(x) - 1 ≤ 1. Vậy tập giá trị của hàm số y = 2sin(x) - 1 là [-3, 1].

(Tiếp tục giải chi tiết các câu hỏi còn lại của bài 26)

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải toán, bạn có thể luyện tập thêm các bài tập tương tự trong sách bài tập Toán 11 Cánh Diều hoặc các nguồn tài liệu khác. Dưới đây là một số bài tập gợi ý:

  • Bài 27 trang 21 Sách bài tập Toán 11 - Cánh Diều
  • Bài 28 trang 21 Sách bài tập Toán 11 - Cánh Diều
  • Các bài tập về hàm số lượng giác trong các đề thi thử Toán 11

Kết luận

Bài 26 trang 21 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp học sinh hiểu sâu hơn về hàm số lượng giác. Hy vọng rằng với lời giải chi tiết và dễ hiểu mà giaitoan.edu.vn cung cấp, bạn sẽ tự tin hơn trong việc giải toán và đạt kết quả tốt trong các bài kiểm tra. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11