Bài 9 trang 69 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tính các giới hạn sau:
Đề bài
Tính các giới hạn sau:
a) \(\lim \frac{{6n - 5}}{{3n}}\)
b) \(\lim \frac{{ - 2{n^2} - 6n + 2}}{{8{n^2} - 5n + 4}}\)
c) \(\lim \frac{{{n^3} - 5n + 1}}{{3{n^2} - 4n + 2}}\)
d) \(\lim \frac{{ - 4n + 1}}{{9{n^2} - n + 2}}\)
e) \(\lim \frac{{\sqrt {4{n^2} + n + 1} }}{{8n + 3}}\)
g) \(\lim \frac{{{4^n} + {5^n}}}{{{{3.4}^n} - {{4.5}^n}}}\)
Phương pháp giải - Xem chi tiết
Sử dụng tính chất về dãy số có giới hạn vô cực và định lí về giới hạn hữu hạn.
Lời giải chi tiết
a) Ta có: \(\lim \frac{{6n - 5}}{{3n}} = \lim \frac{{n\left( {6 - \frac{5}{n}} \right)}}{{3n}} = \lim \frac{{6 - \frac{5}{n}}}{3} = \frac{{\lim 6 - \lim \frac{5}{n}}}{{\lim 3}} = \frac{6}{3} = 2\)
b) Ta có:
\(\lim \frac{{ - 2{n^2} - 6n + 2}}{{8{n^2} - 5n + 4}} = \lim \frac{{{n^2}\left( { - 2 - \frac{6}{n} + \frac{2}{{{n^2}}}} \right)}}{{{n^2}\left( {8 - \frac{5}{n} + \frac{4}{{{n^2}}}} \right)}} = \lim \frac{{ - 2 - \frac{6}{n} + \frac{2}{{{n^2}}}}}{{8 - \frac{5}{n} + \frac{4}{{{n^2}}}}}\)
\( = \frac{{\lim \left( { - 2} \right) - \lim \frac{6}{n} + \lim \frac{2}{{{n^2}}}}}{{\lim 8 - \lim \frac{5}{n} + \lim \frac{4}{{{n^2}}}}} = \frac{{ - 2}}{8} = \frac{{ - 1}}{4}\)
c) Ta có:
\(\lim \frac{{{n^3} - 5n + 1}}{{3{n^2} - 4n + 2}} = \lim \frac{{{n^3}\left( {1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( {\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}} \right)}} = \lim \frac{{1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}}}\)
Vì \(\lim \left( {1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}} \right) = \lim 1 - \lim \frac{5}{{{n^2}}} + \lim \frac{1}{{{n^3}}} = 1 - 0 + 0 = 1\),
Và \(\lim \left( {\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}} \right) = \lim \frac{3}{n} - \lim \frac{4}{{{n^2}}} + \lim \frac{2}{{{n^3}}} = 0\).
Ta suy ra:
\(\lim \frac{{{n^3} - 5n + 1}}{{3{n^2} - 4n + 2}} = \lim \frac{{1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}}} = + \infty \)
d) Ta có:
\(\begin{array}{l}\lim \frac{{ - 4n + 1}}{{9{n^2} - n + 2}} = \lim \frac{{{n^2}\left( {\frac{{ - 4}}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {9 - \frac{1}{n} + \frac{2}{{{n^2}}}} \right)}} = \lim \frac{{\frac{{ - 4}}{n} + \frac{1}{{{n^2}}}}}{{9 - \frac{1}{n} + \frac{2}{{{n^2}}}}} = \frac{{\lim \frac{{ - 4}}{n} + \lim \frac{1}{{{n^2}}}}}{{\lim 9 - \lim \frac{1}{n} + \lim \frac{2}{{{n^2}}}}}\\ = 0\end{array}\)
e) Ta có:
\(\lim \frac{{\sqrt {4{n^2} + n + 1} }}{{8n + 3}} = \lim \frac{{\sqrt {{n^2}\left( {4 + \frac{1}{n} + \frac{1}{{{n^2}}}} \right)} }}{{n\left( {8 + \frac{3}{n}} \right)}} = \lim \frac{{n\sqrt {4 + \frac{1}{n} + \frac{1}{{{n^2}}}} }}{{n\left( {8 + \frac{3}{n}} \right)}}\)
\( = \lim \frac{{\sqrt {4 + \frac{1}{n} + \frac{1}{{{n^2}}}} }}{{8 + \frac{3}{n}}} = \frac{{\sqrt {\lim 4 + \lim \frac{1}{n} + \lim \frac{1}{{{n^2}}}} }}{{\lim 8 + \lim \frac{3}{n}}} = \frac{{\sqrt 4 }}{8} = \frac{2}{8} = \frac{1}{4}\)
f) Ta có:
\(\lim \frac{{{4^n} + {5^n}}}{{{{3.4}^n} - {{4.5}^n}}} = \lim \frac{{\frac{{{4^n}}}{{{5^n}}} + 1}}{{3.\frac{{{4^n}}}{{{5^n}}} - 4}} = \frac{{\lim {{\left( {\frac{4}{5}} \right)}^n} + \lim 1}}{{\lim 3.\lim {{\left( {\frac{4}{5}} \right)}^n} - \lim 4}} = \frac{{0 + 1}}{{3.0 - 4}} =- \frac{1}{4}\)
Bài 9 trang 69 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về đạo hàm. Để giải bài này, học sinh cần nắm vững các khái niệm và công thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và quy tắc đạo hàm của hàm hợp.
Trước khi đi vào giải chi tiết, chúng ta cùng xem lại đề bài của bài 9 trang 69 sách bài tập Toán 11 Cánh Diều:
(Nội dung đề bài sẽ được chèn vào đây - ví dụ: Cho hàm số y = f(x) = x^3 - 3x^2 + 2. Tính f'(x) và tìm các điểm cực trị của hàm số.)
Để giải bài toán này, chúng ta sẽ thực hiện các bước sau:
Áp dụng phương pháp trên, ta tiến hành giải bài toán cụ thể:
Bước 1: Tính đạo hàm f'(x)
f(x) = x^3 - 3x^2 + 2
f'(x) = 3x^2 - 6x
Bước 2: Tìm các điểm cực trị
f'(x) = 0 ⇔ 3x^2 - 6x = 0 ⇔ 3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Bước 3: Xác định loại cực trị
f''(x) = 6x - 6
f''(0) = -6 < 0 ⇒ Hàm số đạt cực đại tại x = 0
f''(2) = 6 > 0 ⇒ Hàm số đạt cực tiểu tại x = 2
Vậy, hàm số đạt cực đại tại x = 0 với giá trị cực đại là f(0) = 2 và đạt cực tiểu tại x = 2 với giá trị cực tiểu là f(2) = -2.
Để củng cố kiến thức, bạn có thể thử giải các bài tập tương tự sau:
Hy vọng với hướng dẫn chi tiết này, bạn đã hiểu rõ cách giải bài 9 trang 69 sách bài tập Toán 11 Cánh Diều. Chúc bạn học tập tốt!