Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 20 trang 73 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài tập này một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Giải bất phương trình \(f'\left( x \right) < 0,\) biết:
Đề bài
Giải bất phương trình \(f'\left( x \right) < 0,\) biết:
a) \(f\left( x \right) = {x^3} - 9{x^2} + 24x;\)
b) \(f\left( x \right) = - {\log _5}\left( {x + 1} \right).\)
Phương pháp giải - Xem chi tiết
Tính \(f'\left( x \right)\) để giải bất phương trình.
Lời giải chi tiết
a) \(f'\left( x \right) < 0 \Leftrightarrow {\left( {{x^3} - 9{x^2} + 24x} \right)^\prime } < 0 \Leftrightarrow 3{x^2} - 18x + 24 < 0 \Leftrightarrow 3\left( {x - 2} \right)\left( {x - 4} \right) < 0\)
\( \Leftrightarrow 2 < x < 4.\)
Tập nghiệm của bất phương trình là: \(\left( {2;4} \right).\)
b) \(f'\left( x \right) < 0 \Leftrightarrow {\left( { - {{\log }_5}\left( {x + 1} \right)} \right)^\prime } < 0 \Leftrightarrow - \frac{1}{{ln5.{{\log }_5}\left( {x + 1} \right)}} < 0\)
\( \Leftrightarrow ln5.{\log _5}\left( {x + 1} \right) > 0 \Leftrightarrow {\log _5}\left( {x + 1} \right) > 0 \Leftrightarrow x + 1 > 1 \Leftrightarrow x > 0.\)
Tập nghiệm của bất phương trình là: \(\left( {0; + \infty } \right).\)
Bài 20 trang 73 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường tập trung vào việc vận dụng các kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ, và các ứng dụng trong hình học không gian.
Bài 20 thường bao gồm các dạng bài tập sau:
a.b = |a||b|cos(θ)
a.b = 0
Để giúp bạn hiểu rõ hơn, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Lưu ý: Vì bài tập cụ thể không được cung cấp, phần này sẽ trình bày một ví dụ minh họa.)
Cho hai vectơ a = (1; 2; -1)
và b = (2; -1; 3)
. Tính góc θ giữa hai vectơ a và b.
a.b = (1 * 2) + (2 * -1) + (-1 * 3) = 2 - 2 - 3 = -3
|a| = √(1² + 2² + (-1)²) = √6
|b| = √(2² + (-1)² + 3²) = √14
cos(θ) = (a.b) / (|a||b|) = -3 / (√6 * √14) = -3 / √84 = -3 / (2√21)
θ = arccos(-3 / (2√21)) ≈ 106.6°
Để học tập hiệu quả hơn, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng với lời giải chi tiết và các mẹo giải bài tập được trình bày trong bài viết này, bạn đã có thể tự tin giải bài 20 trang 73 sách bài tập Toán 11 - Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!