Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 19 trang 19 Sách bài tập Toán 11 - Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải các bài tập toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn dễ dàng theo dõi và hiểu bài.
n ngẫu nhiên hai số khác nhau từ 21 số nguyên dương đầu tiên.
Đề bài
Chọn ngẫu nhiên hai số khác nhau từ 21 số nguyên dương đầu tiên. Tính xác suất của các biến cố:
a) A: “Hai số được chọn là số chẵn”;
b) B: “Hai số được chọn là số lẻ”;
c) C: “Tổng của hai số được chọn là số chẵn”.
Phương pháp giải - Xem chi tiết
- Xác định số phần tử của không gian mẫu.
- Xác định số phần tử của các biến cố.
Lời giải chi tiết
Mỗi cách chọn ngẫu nhiên hai số khác nhau từ 21 số nguyên dương cho ta một tổ hợp chập 2 của 21 phần tử. Do đó, không gian mẫu Ω gồm các phần tử chập 2 của 21 phần tử và \(n\left( \Omega \right) = C_{21}^2 = 210.\)
a) Ta thấy trong 21 số nguyên dương đầu tiên có 10 số chẵn.
Suy ra số các kết quả thuận lợi cho biến cố A là \(n\left( A \right) = C_{10}^2 = 45.\)
Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{45}}{{210}} = \frac{3}{{14}}.\)
b) Ta thấy trong 21 số nguyên dương đầu tiên có 11 số lẻ.
Suy ra số các kết quả thuận lợi cho biến cố B là \(n\left( B \right) = C_{11}^2 = 55.\)
Xác suất của biến cố B là: \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{55}}{{210}} = \frac{{11}}{{42}}.\)
c) Ta thấy, tổng của hai số được chọn là số chẵn khi hai số đó phải cùng chẵn hoặc cùng lẻ.
Ta có: \(C = A \cup B,{\rm{ }}A \cap B = \emptyset \Rightarrow n\left( C \right) = n\left( A \right) + n\left( B \right).\)
Suy ra số các kết quả thuận lợi cho biến cố C là:
\(n\left( C \right) = n\left( A \right) + n\left( B \right) = 45 + 55 = 100.\)
Xác suất của biến cố C là: \(P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{100}}{{210}} = \frac{{10}}{{21}}.\)
Bài 19 trang 19 Sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về hàm số bậc hai. Để giải quyết bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về:
Để giải bài 19 trang 19 Sách bài tập Toán 11 - Cánh Diều, chúng ta cần đọc kỹ đề bài và xác định yêu cầu. Thông thường, bài tập sẽ yêu cầu:
Ví dụ, một bài tập có thể yêu cầu tìm giá trị của x sao cho y = 0. Trong trường hợp này, chúng ta cần giải phương trình bậc hai ax² + bx + c = 0. Việc sử dụng công thức nghiệm của phương trình bậc hai là rất quan trọng.
Dưới đây là một ví dụ minh họa cách giải bài 19 trang 19 Sách bài tập Toán 11 - Cánh Diều:
Bài tập: Cho hàm số y = x² - 4x + 3. Hãy tìm tọa độ đỉnh của parabol và vẽ đồ thị hàm số.
Giải:
Để giải bài tập về hàm số bậc hai một cách hiệu quả, bạn cần lưu ý những điều sau:
Hàm số bậc hai có rất nhiều ứng dụng trong thực tế, ví dụ như:
Bài 19 trang 19 Sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số bậc hai. Hy vọng rằng với hướng dẫn chi tiết và các lưu ý quan trọng trên, bạn sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.
Giaitoan.edu.vn luôn đồng hành cùng bạn trên con đường chinh phục tri thức. Chúc bạn học tập tốt!