Logo Header
  1. Môn Toán
  2. Giải bài 63 trang 51 sách bài tập toán 11 - Cánh diều

Giải bài 63 trang 51 sách bài tập toán 11 - Cánh diều

Giải bài 63 trang 51 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 63 trang 51 sách bài tập Toán 11 - Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Giải mỗi bất phương trình sau:

Đề bài

Giải mỗi bất phương trình sau:

a) \({\left( {0,2} \right)^{2x + 1}} > 1;\)

b) \({27^{2x}} \le \frac{1}{9};\)

c) \({\left( {\frac{1}{2}} \right)^{{x^2} - 5x + 4}} \ge 4;\)

d) \({\left( {\frac{1}{{25}}} \right)^{x + 1}} < {125^{2x}};\)

e) \({\left( {\sqrt 2 - 1} \right)^{3x - 2}} < {\left( {\sqrt 2 + 1} \right)^{4 - x}};\)

g) \({\left( {0,5} \right)^{2{x^2} - x}} > {\left( {\sqrt 2 } \right)^{4x - 12}}.\)

Phương pháp giải - Xem chi tiếtGiải bài 63 trang 51 sách bài tập toán 11 - Cánh diều 1

Xét bất phương trình dạng \({a^x} > b\)

Với \(a > 1,{\rm{ }}b > 0\) thì bất phương trình có nghiệm \(x > {\log _a}b.\)

Với \(0 < a < 1,{\rm{ }}b > 0\) thì bất phương trình có nghiệm \(x < {\log _a}b.\)

Lời giải chi tiết

a) \({\left( {0,2} \right)^{2x + 1}} > 1 \Leftrightarrow 2x + 1 < {\log _{0,2}}1 \Leftrightarrow 2x + 1 < 0 \Leftrightarrow x < - \frac{1}{2}.\)

b) \({27^{2x}} \le \frac{1}{9} \Leftrightarrow {3^{6x}} \le {3^{ - 2}} \Leftrightarrow 6x \le - 2 \Leftrightarrow x \le - \frac{1}{3}.\)

c) \({\left( {\frac{1}{2}} \right)^{{x^2} - 5x + 4}} \ge 4 \Leftrightarrow {\left( {\frac{1}{2}} \right)^{{x^2} - 5x + 4}} \ge {\left( {\frac{1}{2}} \right)^{ - 2}} \Leftrightarrow {x^2} - 5x + 4 \le - 2 \Leftrightarrow {x^2} - 5x + 6 \le 0\)

\( \Leftrightarrow \left( {x - 2} \right)\left( {x - 3} \right) \le 0 \Leftrightarrow 2 \le x \le 3.\)

d) \({\left( {\frac{1}{{25}}} \right)^{x + 1}} < {125^{2x}} \Leftrightarrow {\left( {{5^{ - 2}}} \right)^{x + 1}} < {\left( {{5^3}} \right)^{2x}} \Leftrightarrow {5^{ - 2x - 2}} < {5^{6x}} \Leftrightarrow - 2x - 2 < 6x \Leftrightarrow x > - \frac{1}{4}.\)

e) Ta có:

\(\begin{array}{l}{\left( {\sqrt 2 - 1} \right)^{3x - 2}} < {\left( {\sqrt 2 + 1} \right)^{4 - x}} \Leftrightarrow {\left( {{{\left( {\sqrt 2 + 1} \right)}^{ - 1}}} \right)^{3x - 2}} < {\left( {\sqrt 2 + 1} \right)^{4 - x}}\\ \Leftrightarrow {\left( {\sqrt 2 + 1} \right)^{2 - 3x}} < {\left( {\sqrt 2 + 1} \right)^{4 - x}} \Leftrightarrow 2 - 3x < 4 - x \Leftrightarrow 2x > - 2 \Leftrightarrow x > - 1.\end{array}\)

g) \({\left( {0,5} \right)^{2{x^2} - x}} > {\left( {\sqrt 2 } \right)^{^{4x - 12}}} \Leftrightarrow {\left( {{2^{ - 1}}} \right)^{2{x^2} - x}} > {\left( {{2^{\frac{1}{2}}}} \right)^{4x - 12}} \Leftrightarrow {2^{x - 2{x^2}}} > {2^{2x - 6}}\)

\( \Leftrightarrow x - 2{x^2} > 2x - 6 \Leftrightarrow 2{x^2} + x - 6 < 0 \Leftrightarrow \left( {2x - 3} \right)\left( {x + 2} \right) < 0 \Leftrightarrow - 2 < x < \frac{3}{2}.\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 63 trang 51 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng toán học. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 63 trang 51 Sách bài tập Toán 11 - Cánh Diều: Tổng quan

Bài 63 trang 51 sách bài tập Toán 11 - Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường tập trung vào việc vận dụng các kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ, và các ứng dụng trong hình học không gian.

Nội dung bài tập

Bài 63 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính góc giữa hai vectơ. Yêu cầu tính góc giữa hai vectơ cho trước, sử dụng công thức liên hệ giữa tích vô hướng và góc giữa hai vectơ: a.b = |a||b|cos(θ)
  • Dạng 2: Xác định mối quan hệ giữa các vectơ. Xác định xem hai vectơ vuông góc, song song hay đồng phẳng dựa vào tích vô hướng của chúng.
  • Dạng 3: Ứng dụng vào hình học không gian. Sử dụng tích vô hướng để tính độ dài cạnh, đường cao, diện tích tam giác, thể tích khối chóp, khối lăng trụ trong không gian.

Lời giải chi tiết bài 63 trang 51

Để giải bài 63 trang 51 sách bài tập Toán 11 - Cánh Diều, bạn cần nắm vững các kiến thức sau:

  1. Định nghĩa tích vô hướng của hai vectơ:a.b = |a||b|cos(θ), trong đó θ là góc giữa hai vectơ a và b.
  2. Các tính chất của tích vô hướng:a.b = b.a, a.(b+c) = a.b + a.c, (ka).b = k(a.b)
  3. Điều kiện vuông góc của hai vectơ:a ⊥ b ⇔ a.b = 0

Dưới đây là ví dụ minh họa cách giải một bài tập thuộc dạng 1:

Ví dụ:

Cho hai vectơ a = (1; 2; -1)b = (2; -1; 3). Tính góc giữa hai vectơ a và b.

Lời giải:

Ta có: a.b = 1*2 + 2*(-1) + (-1)*3 = 2 - 2 - 3 = -3

|a| = √(1² + 2² + (-1)²) = √6

|b| = √(2² + (-1)² + 3²) = √14

Áp dụng công thức tính góc giữa hai vectơ: cos(θ) = (a.b) / (|a||b|) = -3 / (√6 * √14) = -3 / √(84) = -3 / (2√21)

Suy ra: θ = arccos(-3 / (2√21)) ≈ 106.6°

Mẹo giải nhanh

Để giải nhanh các bài tập về tích vô hướng, bạn nên:

  • Nắm vững các công thức liên quan đến tích vô hướng.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính bỏ túi để tính toán nhanh chóng và chính xác.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong sách bài tập Toán 11 - Cánh Diều hoặc trên các trang web học toán online.

Kết luận

Bài 63 trang 51 sách bài tập Toán 11 - Cánh Diều là một bài tập quan trọng giúp bạn rèn luyện kỹ năng vận dụng kiến thức về tích vô hướng của hai vectơ. Hy vọng với lời giải chi tiết và các mẹo giải nhanh trên đây, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả.

Dạng bàiCông thức
Tính góccos(θ) = (a.b) / (|a||b|)
Kiểm tra vuông góca.b = 0

Tài liệu, đề thi và đáp án Toán 11