Logo Header
  1. Môn Toán
  2. Giải bài 72 trang 32 sách bài tập toán 11 - Cánh diều

Giải bài 72 trang 32 sách bài tập toán 11 - Cánh diều

Giải bài 72 trang 32 Sách bài tập Toán 11 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 72 trang 32 sách bài tập Toán 11 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 72 trang 32 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Giải phương trình:

Đề bài

Giải phương trình:

a) \(\sin \left( {2x - \frac{\pi }{6}} \right) = - \frac{1}{2}\)

b) \(\sin \left( {\frac{x}{3} + \frac{\pi }{2}} \right) = \frac{{\sqrt 3 }}{2}\)

c) \(\cos \left( {2x + \frac{\pi }{5}} \right) = \frac{{\sqrt 2 }}{2}\)

d) \(2\cos \frac{x}{2} + \sqrt 3 = 0\)

e) \(\sqrt 3 \tan \left( {2x + \frac{\pi }{3}} \right) - 1 = 0\)

g) \(\cot \left( {3x + \pi } \right) = - 1\)

Phương pháp giải - Xem chi tiếtGiải bài 72 trang 32 sách bài tập toán 11 - Cánh diều 1

Sử dụng các kết quả sau:

  1. \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
  2. \(\cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
  3. \(\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)
  4. \(\cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)

Lời giải chi tiết

a) Ta có \(\sin \left( { - \frac{\pi }{6}} \right) = - \frac{1}{2}\), phương trình trở thành:

\(\sin \left( {2x - \frac{\pi }{6}} \right) = \sin \left( { - \frac{\pi }{6}} \right) \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{6} = - \frac{\pi }{6} + k2\pi \\2x - \frac{\pi }{6} = \pi + \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = k2\pi \\2x = \frac{{4\pi }}{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{{2\pi }}{3} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

b) Ta có \(\sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\), phương trình trở thành:

\(\sin \left( {\frac{x}{3} + \frac{\pi }{2}} \right) = \sin \frac{\pi }{3} \Leftrightarrow \left[ \begin{array}{l} + \frac{\pi }{2} = \frac{\pi }{3} + k2\pi \\\frac{x}{3} + \frac{\pi }{2} = \pi - \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\frac{x}{3} = - \frac{\pi }{6} + k2\pi \\\frac{x}{3} = \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{2} + k6\pi \\x = \frac{\pi }{2} + k6\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

c) Ta có \(\cos \frac{\pi }{4} = \frac{{\sqrt 2 }}{2}\), phương trình trở thành:

\(\cos \left( {2x + \frac{\pi }{5}} \right) = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{5} = \frac{\pi }{4} + k2\pi \\2x + \frac{\pi }{5} = - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{{20}} + k2\pi \\2x = - \frac{{9\pi }}{{20}} + k2\pi \end{array} \right.\left[ \begin{array}{l}x = \frac{\pi }{{40}} + k\pi \\x = - \frac{{9\pi }}{{40}} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

d) \(2\cos \frac{x}{2} + \sqrt 3 = 0 \Leftrightarrow \cos \frac{x}{2} = - \frac{{\sqrt 3 }}{2}\)

Ta có \(\cos \frac{{5\pi }}{6} = - \frac{{\sqrt 3 }}{2}\), phương trình trở thành:

\(\cos \frac{x}{2} = \cos \frac{{5\pi }}{6} \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} = \frac{{5\pi }}{6} + k2\pi \\\frac{x}{2} = - \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{3} + k4\pi \\x = - \frac{{5\pi }}{3} + k4\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

e) \(\sqrt 3 \tan \left( {2x + \frac{\pi }{3}} \right) - 1 = 0 \Leftrightarrow \tan \left( {2x + \frac{\pi }{3}} \right) = \frac{1}{{\sqrt 3 }}\)

Ta có \(\tan \frac{\pi }{6} = \frac{1}{{\sqrt 3 }}\), phương trình trở thành:

\(\tan \left( {2x + \frac{\pi }{3}} \right) = \tan \frac{\pi }{6} \Leftrightarrow 2x + \frac{\pi }{3} = \frac{\pi }{6} + k\pi \Leftrightarrow 2x = - \frac{\pi }{6} + k\pi \Leftrightarrow x = - \frac{\pi }{12} + k\frac{\pi }{2}\left( {k \in \mathbb{Z}} \right)\)

f) Ta có \(\cot \left( { - \frac{\pi }{4}} \right) = - 1\), phương trình trở thành:

\(\cot \left( {3x + \pi } \right) = \cot \frac{{ - \pi }}{4} \Leftrightarrow 3x + \pi = \frac{{ - \pi }}{4} + k\pi \Leftrightarrow 3x = \frac{{ - 5\pi }}{4} + k\pi \Leftrightarrow x = \frac{{ - 5\pi }}{{12}} + k\frac{\pi }{3}\left( {k \in \mathbb{Z}} \right)\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 72 trang 32 sách bài tập toán 11 - Cánh diều – hành trang không thể thiếu trong chuyên mục toán lớp 11 trên nền tảng môn toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 72 trang 32 Sách bài tập Toán 11 - Cánh Diều: Chi tiết và Dễ Hiểu

Bài 72 trang 32 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường tập trung vào việc xác định tập xác định, tập giá trị, tính đơn điệu và các tính chất khác của hàm số lượng giác. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về hàm số lượng giác, bao gồm định nghĩa, đồ thị, tính chất và các công thức liên quan.

Phân tích bài toán và phương pháp giải

Trước khi bắt đầu giải bài tập, điều quan trọng là phải đọc kỹ đề bài, xác định rõ yêu cầu và các dữ kiện đã cho. Sau đó, cần phân tích bài toán để tìm ra phương pháp giải phù hợp. Đối với bài 72 trang 32, phương pháp giải thường bao gồm:

  1. Xác định tập xác định: Tìm các giá trị của x sao cho hàm số có nghĩa.
  2. Xác định tập giá trị: Tìm các giá trị của y mà hàm số có thể đạt được.
  3. Xét tính đơn điệu: Sử dụng đạo hàm để xác định khoảng tăng, giảm của hàm số.
  4. Tìm cực trị: Giải phương trình đạo hàm bằng 0 để tìm các điểm cực trị.
  5. Vẽ đồ thị: Dựa vào các thông tin đã tìm được để vẽ đồ thị hàm số.

Lời giải chi tiết bài 72 trang 32

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp lời giải chi tiết cho từng câu hỏi trong bài 72 trang 32 sách bài tập Toán 11 Cánh Diều. (Ở đây sẽ là nội dung giải chi tiết từng câu hỏi của bài 72, trang 32. Ví dụ:)

Câu a:

(Nội dung câu a của bài 72)

Lời giải:

(Lời giải chi tiết cho câu a)

Câu b:

(Nội dung câu b của bài 72)

Lời giải:

(Lời giải chi tiết cho câu b)

Các dạng bài tập tương tự và cách giải

Ngoài bài 72 trang 32, còn rất nhiều bài tập tương tự về hàm số lượng giác trong sách bài tập Toán 11 Cánh Diều. Để chuẩn bị tốt cho các bài kiểm tra, bạn nên luyện tập thêm các bài tập sau:

  • Bài 73 trang 32
  • Bài 74 trang 33
  • Bài 75 trang 34

Khi giải các bài tập này, bạn có thể áp dụng các phương pháp giải tương tự như đã trình bày ở trên. Tuy nhiên, cần lưu ý rằng mỗi bài tập có thể có những đặc điểm riêng, đòi hỏi bạn phải linh hoạt trong việc lựa chọn phương pháp giải.

Mẹo học tập hiệu quả

Để học tốt môn Toán 11, đặc biệt là phần hàm số lượng giác, bạn có thể tham khảo một số mẹo sau:

  • Nắm vững kiến thức cơ bản: Đảm bảo bạn hiểu rõ định nghĩa, đồ thị, tính chất và các công thức liên quan đến hàm số lượng giác.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
  • Sử dụng các công cụ hỗ trợ: Sử dụng máy tính bỏ túi, phần mềm vẽ đồ thị hoặc các trang web học toán online để hỗ trợ quá trình học tập.
  • Học nhóm: Trao đổi kiến thức và kinh nghiệm với bạn bè để cùng nhau tiến bộ.

Kết luận

Bài 72 trang 32 sách bài tập Toán 11 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số lượng giác. Hy vọng rằng với lời giải chi tiết và các hướng dẫn trong bài viết này, bạn sẽ tự tin hơn trong việc giải quyết bài tập và đạt kết quả tốt trong môn Toán 11. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11