Chào mừng bạn đến với bài giải Bài 1 trang 75 SGK Toán 11 tập 2 - Cánh Diều tại giaitoan.edu.vn. Bài viết này cung cấp lời giải chi tiết, từng bước, giúp bạn hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ bạn học toán hiệu quả và đạt kết quả tốt nhất.
Tìm đạo hàm cấp hai của mỗi hàm số sau:
Đề bài
Tìm đạo hàm cấp hai của mỗi hàm số sau:
a) \(y = \frac{1}{{2x + 3}}\).
b) \(y = {\log _3}x\).
c) \(y = {2^x}\).
Phương pháp giải - Xem chi tiết
Dựa vào định nghĩa đạo hàm của hàm số để tính.
Lời giải chi tiết
a)
\(y' = \left( {\frac{1}{{2x - 3}}} \right)' = \frac{{1'\left( {2x + 3} \right) - 1\left( {2x + 3} \right)'}}{{{{\left( {2x - 3} \right)}^2}}} = - \frac{2}{{{{\left( {2x - 3} \right)}^2}}}\).
\(y'' = \left[ { - \frac{2}{{{{\left( {2x - 3} \right)}^2}}}} \right]' = - \frac{{2'{{\left( {2x - 3} \right)}^2} - 2\left[ {{{\left( {2x - 3} \right)}^2}} \right]'}}{{{{\left( {2x - 3} \right)}^4}}}\)
\( = - \frac{{ - 2.2\left( {2x - 3} \right)'\left( {2x - 3} \right)}}{{{{\left( {2x - 3} \right)}^4}}} = \frac{{8\left( {2x - 3} \right)}}{{{{\left( {2x - 3} \right)}^4}}} = \frac{8}{{{{\left( {2x - 3} \right)}^3}}}\).
b)
\(y' = \left( {{{\log }_3}x} \right)' = \frac{1}{{x\ln 3}}\).
\( y'' = \left( {\frac{1}{{x\ln 3}}} \right)' = - \frac{{\left( {x\ln 3} \right)'}}{{{{\left( {x\ln 3} \right)}^2}}} \)
\(= - \frac{{\ln 3}}{{{{\left( {x\ln 3} \right)}^2}}} = - \frac{{\ln 3}}{{{{\left( {x\ln 3} \right)}^2}}} = - \frac{1}{{x.\ln 3}}\).
c)
\(y' = \left( {{2^x}} \right)' = {2^x}.\ln 2\).
\( y'' = \left( {{2^x}.\ln 2} \right)' = {2^x}.\ln 2.\ln 2 = {2^x}.{\left( {\ln 2} \right)^2}\).
Bài 1 trang 75 SGK Toán 11 tập 2 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh nắm vững các khái niệm về đạo hàm của hàm số, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài 1 thường bao gồm các dạng bài tập sau:
Để giải Bài 1 trang 75 SGK Toán 11 tập 2 - Cánh Diều, chúng ta cần thực hiện các bước sau:
Giả sử hàm số cần xét là f(x) = x3 - 3x2 + 2.
Bước 1: Hàm số f(x) = x3 - 3x2 + 2.
Bước 2: Đạo hàm cấp nhất: f'(x) = 3x2 - 6x.
Bước 3: Tập xác định: D = ℝ.
Bước 4: Giải phương trình f'(x) = 0: 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2.
Bước 5: Lập bảng biến thiên:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Bước 6: Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.
Bước 7: Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2).
Đạo hàm có nhiều ứng dụng quan trọng trong toán học và các lĩnh vực khác, bao gồm:
Hy vọng bài giải chi tiết này sẽ giúp bạn hiểu rõ hơn về Bài 1 trang 75 SGK Toán 11 tập 2 - Cánh Diều. Chúc bạn học tập tốt!