Logo Header
  1. Môn Toán
  2. Bài 5 trang 79 SGK Toán 11 tập 1 - Cánh Diều

Bài 5 trang 79 SGK Toán 11 tập 1 - Cánh Diều

Bài 5 trang 79 SGK Toán 11 tập 1 - Cánh Diều: Giải pháp chi tiết và dễ hiểu

Chào mừng các em học sinh đến với lời giải chi tiết Bài 5 trang 79 SGK Toán 11 tập 1 - Cánh Diều. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất trong môn Toán.

Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{2x + a}&{{\rm{ }}x < 2}\\4&{{\rm{ }}x = 2}\\{ - 3x + b}&{{\rm{ }}\,x > 2}\end{array}} \right.\)

Đề bài

Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{2x + a}&{{\rm{ }}x < 2}\\4&{{\rm{ }}x = 2}\\{ - 3x + b}&{{\rm{ }}\,x > 2}\end{array}} \right.\)

a) Với \(a = 0,b = 1\), xét tính liên tục của hàm số tại \(x = 2\).

b) Với giá trị nào của a, b thì hàm số liên tục tại \(x = 2\) ?

c) Với giá trị nào của a, b thì hàm số liên tục trên tập xác định?

Phương pháp giải - Xem chi tiếtBài 5 trang 79 SGK Toán 11 tập 1 - Cánh Diều 1

- Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = f\left( {{x_0}} \right)\)

- Các hàm đa thức liên tục trên \(\mathbb{R}\)

Lời giải chi tiết

Với a = 0, b = 1, hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{2x}&{{\rm{ }}x < 2}\\4&{{\rm{ }}x = 2}\\{ - 3x + 1}&{{\rm{ }}\,x > 2}\end{array}} \right.\)

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - 3x + 1} \right) = - 3.2 + 1 = - 5\\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {2x} \right) = 2.2 = 4\\ \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\end{array}\)

Do đó không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)

Vậy hàm số không liên tục tại x = 2.

b) Ta có:

 \(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - 3x + b} \right) = - 3.2 + b = - 6 + b\\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {2x + a} \right) = 2.2 + a = 4 + a\\f\left( 2 \right) = 4\end{array}\)

Để hàm số liên tục tại x = 2 thì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = f\left( 2 \right)\)

\( \Leftrightarrow - 6 + b = 4 + a = 4 \Leftrightarrow \left\{ \begin{array}{l}4 + a = 4\\ - 6 + b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 10\end{array} \right.\)

Vậy với a = 0 và b = 10 thì hàm số liên tục tại x = 2.

c) Tập xác định của hàm số là: ℝ.

Với x < 2 thì \(f\left( x \right) = 2x + a\) là hàm đa thức nên liên tục.

Với x > 2 thì \(f\left( x \right) = -3x + b\) là hàm đa thức nên liên tục.

Do đó để hàm số liên tục trên ℝ thì hàm số \(f\left( x \right)\) liên tục tại x = 2.

Vậy với a = 0 và b = 10 thỏa mãn điều kiện.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 5 trang 79 SGK Toán 11 tập 1 - Cánh Diều – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng toán học. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 5 trang 79 SGK Toán 11 tập 1 - Cánh Diều: Giải chi tiết và phân tích chuyên sâu

Bài 5 trang 79 SGK Toán 11 tập 1 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về hàm số và đồ thị để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm cơ bản như tập xác định, tập giá trị, tính đơn điệu, cực trị của hàm số, và khả năng vẽ đồ thị hàm số.

Nội dung bài tập Bài 5 trang 79 SGK Toán 11 tập 1 - Cánh Diều

Bài 5 thường bao gồm các dạng bài tập sau:

  • Xác định tập xác định của hàm số: Học sinh cần xác định được các giá trị của x mà hàm số có nghĩa.
  • Tìm tập giá trị của hàm số: Xác định khoảng giá trị mà hàm số có thể đạt được.
  • Khảo sát sự biến thiên của hàm số: Phân tích tính đơn điệu (đồng biến, nghịch biến) và các điểm cực trị của hàm số.
  • Vẽ đồ thị hàm số: Sử dụng các thông tin đã tìm được để vẽ đồ thị hàm số một cách chính xác.
  • Ứng dụng đồ thị hàm số để giải các bài toán: Sử dụng đồ thị hàm số để tìm nghiệm của phương trình, giải bất phương trình, hoặc tìm giá trị lớn nhất, nhỏ nhất của hàm số.

Hướng dẫn giải chi tiết Bài 5 trang 79 SGK Toán 11 tập 1 - Cánh Diều

Để giải quyết bài tập này một cách hiệu quả, học sinh cần thực hiện theo các bước sau:

  1. Đọc kỹ đề bài: Hiểu rõ yêu cầu của bài tập và các thông tin đã cho.
  2. Xác định dạng bài tập: Xác định xem bài tập thuộc dạng nào trong các dạng đã nêu ở trên.
  3. Vận dụng kiến thức: Sử dụng các kiến thức và công thức đã học để giải quyết bài tập.
  4. Kiểm tra lại kết quả: Đảm bảo rằng kết quả của bạn là chính xác và hợp lý.

Ví dụ minh họa giải Bài 5 trang 79 SGK Toán 11 tập 1 - Cánh Diều

Ví dụ: Xét hàm số y = x2 - 4x + 3. Hãy xác định tập xác định, tập giá trị, và vẽ đồ thị của hàm số.

Giải:

  • Tập xác định: Vì hàm số là một đa thức bậc hai, tập xác định của hàm số là R (tập hợp tất cả các số thực).
  • Tập giá trị: Hàm số có dạng parabol với hệ số a = 1 > 0, do đó hàm số có giá trị nhỏ nhất tại đỉnh của parabol. Hoành độ đỉnh là x = -b/2a = 4/2 = 2. Tung độ đỉnh là y = 22 - 4*2 + 3 = -1. Vậy tập giá trị của hàm số là [-1, +∞).
  • Đồ thị: Đồ thị của hàm số là một parabol có đỉnh tại (2, -1) và mở lên trên.

Mẹo giải nhanh Bài 5 trang 79 SGK Toán 11 tập 1 - Cánh Diều

Để giải nhanh các bài tập về hàm số và đồ thị, học sinh nên:

  • Nắm vững các công thức: Công thức tính hoành độ đỉnh, tung độ đỉnh, trục đối xứng của parabol.
  • Sử dụng máy tính bỏ túi: Máy tính bỏ túi có thể giúp bạn tính toán nhanh chóng và chính xác.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài tập và rèn luyện kỹ năng giải toán.

Tài liệu tham khảo hỗ trợ giải Bài 5 trang 79 SGK Toán 11 tập 1 - Cánh Diều

Ngoài sách giáo khoa, học sinh có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 11: Cung cấp nhiều bài tập luyện tập khác nhau.
  • Các trang web học Toán online: Cung cấp lời giải chi tiết và các video hướng dẫn.
  • Các thầy cô giáo: Hỏi thầy cô giáo để được giải đáp các thắc mắc.

Kết luận

Bài 5 trang 79 SGK Toán 11 tập 1 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số và đồ thị. Hy vọng rằng với những hướng dẫn chi tiết và các mẹo giải nhanh trên đây, các em sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 11