Bài 4 trang 24 SGK Toán 11 tập 2 thuộc chương trình Toán 11 Cánh Diều, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này đòi hỏi học sinh phải nắm vững các công thức đạo hàm cơ bản và kỹ năng giải toán.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Một hộp có 12 viên bi có cùng kích thước và khối lượng, trong đó có 7 viên bi màu xanh và 5 viên bi màu vàng.
Đề bài
Một hộp có 12 viên bi có cùng kích thước và khối lượng, trong đó có 7 viên bi màu xanh và 5 viên bi màu vàng. Chọn ngẫu nhiên 5 viên bi từ hộp đó. Tính xác suất để trong 5 viên bi được chọn có ít nhất 2 viên bi màu vàng.
Phương pháp giải - Xem chi tiết
Dùng quy tắc chỉnh hợp để tìm số phần tử của không gian mẫu và tập hợp cần tìm
Lời giải chi tiết
- Số phần tử của không gian mẫu là: \(\Omega = C_{12}^5 = 792\)
- Số cách lấy ra 5 viên bi sao cho trong đó có ít nhất 2 viên bi màu vàng là:
+ Lấy 2 viên bi màu vàng và 3 viên màu xanh: \(C_5^2.C_7^3 = 350\)
+ Lấy 3 viên bi màu vàng và 2 viên màu xanh: \(\left( {C_5^3} \right).\left( {C_7^2} \right) = 210\)
+ Lấy 4 viên bi màu vàng và 1 viên màu xanh: \(\left( {C_5^4} \right).\left( {C_7^1} \right) = 35\)
+ Lấy 5 viên bi màu vàng: \(C_5^5 = 1\)
⇨ Tổng số cách lấy ra 5 viên bi sao cho trong đó có ít nhất 2 viên bi màu vàng là: \(350 + 210 + 35 + 1 = 596\)
- Xác suất để lấy ra 5 viên bi sao cho trong đó có ít nhất 2 viên bi màu vàng là:\(P = \frac{{596}}{{792}} = \frac{{149}}{{198}}\)
Bài 4 trang 24 SGK Toán 11 tập 2 – Cánh Diều là một bài tập quan trọng trong chương trình học, yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán liên quan đến tốc độ thay đổi của đại lượng. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài 4 thường yêu cầu học sinh tính đạo hàm của một hàm số cho trước, hoặc tìm đạo hàm của hàm số tại một điểm cụ thể. Ngoài ra, bài tập có thể yêu cầu học sinh sử dụng đạo hàm để giải các bài toán thực tế, chẳng hạn như tính vận tốc của một vật chuyển động, hoặc tìm điểm dừng của một đồ thị.
Để giải bài 4 trang 24 SGK Toán 11 tập 2 – Cánh Diều, học sinh có thể áp dụng các phương pháp sau:
Giả sử hàm số cần tính đạo hàm là f(x) = x2 + 2x + 1. Để tính đạo hàm của hàm số này, ta áp dụng quy tắc đạo hàm của tổng và quy tắc đạo hàm của lũy thừa:
f'(x) = 2x + 2
Khi giải bài 4 trang 24 SGK Toán 11 tập 2 – Cánh Diều, học sinh cần lưu ý những điều sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, chẳng hạn như:
Bài 4 trang 24 SGK Toán 11 tập 2 – Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Bằng cách nắm vững các khái niệm cơ bản, áp dụng các quy tắc tính đạo hàm một cách chính xác và luyện tập thường xuyên, học sinh có thể tự tin giải quyết các bài tập liên quan đến đạo hàm.