Bài 7 trang 116 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Cánh Diều, tập trung vào việc rèn luyện kỹ năng giải các bài toán về đạo hàm của hàm số. Bài tập này đòi hỏi học sinh nắm vững kiến thức về các quy tắc tính đạo hàm và áp dụng chúng một cách linh hoạt.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh hiểu rõ bản chất của bài toán và tự tin giải các bài tập tương tự.
Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(AB\) (Hình 100).
Đề bài
Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(AB\) (Hình 100).
a) Tính góc giữa hai đường thẳng \(AB\) và \(B'C'\).
b) Tính góc giữa đường thẳng \(A'B\) và mặt phẳng \(\left( {ABC} \right)\).
c) Tính số đo của góc nhị diện \(\left[ {B,CC',M} \right]\).
d) Chứng minh rằng \(CC'\parallel \left( {ABB'A'} \right)\). Tính khoảng cách giữa đường thẳng \(CC'\) và mặt phẳng \(\left( {ABB'A'} \right)\).
e) Chứng minh rằng \(CM \bot \left( {ABB'A'} \right)\). Tính khoảng cách giữa hai đường thẳng \(CC'\) và \(A'M\).
g) Tính thể tích của khối lăng trụ tam giác đều \(ABC.A'B'C'\) và thể tích khối chóp \(A'.MBC\).
Phương pháp giải - Xem chi tiết
a) Cách xác định góc giữa hai đường thẳng \(a\) và \(b\):
Bước 1: Lấy một điểm \(O\) bất kì.
Bước 2: Qua điểm \(O\) dựng đường thẳng \(a'\parallel a\) và đường thẳng \(b'\parallel b\).
Bước 3: Tính \(\left( {a,b} \right) = \left( {a',b'} \right)\).
b) Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.
c) Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)
Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).
Bước 2: Tìm mặt phẳng \(\left( R \right) \bot c\).
Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).
Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).
d) ‒ Chứng minh đường thẳng song song với mặt phẳng: Chứng minh đường thẳng song song với một đường thẳng nằm trên mặt phẳng.
‒ Cách tính khoảng cách giữa đường thẳng và mặt phẳng song song: Tính khoảng cách từ một điểm trên đường thẳng đến mặt phẳng.
e) ‒ Chứng minh đường thẳng vuông góc với mặt phẳng: Chứng minh đường thẳng vuông góc với hai đường thẳng cắt nhau nằm trên mặt phẳng.
‒ Cách tính khoảng cách giữa hai đường thẳng chéo nhau:
Cách 1: Dựng đường vuông góc chung.
Cách 2: Tính khoảng cách từ đường thẳng này đến một mặt phẳng song song với đường thẳng đó và chứa đường thẳng còn lại.
g) ‒ Sử dụng công thức tính thể tích khối lăng trụ: \(V = Sh\).
‒ Sử dụng công thức tính thể tích khối chóp: \(V = \frac{1}{3}Sh\).
Lời giải chi tiết
a) \(BCC'B'\) là hình chữ nhật \( \Rightarrow BC\parallel B'C'\)
\( \Rightarrow \left( {AB,B'C'} \right) = \left( {AB,BC} \right) = \widehat {ABC} = {60^ \circ }\).
b)
\(\Delta AA'B\) vuông tại \(A \Rightarrow \tan \widehat {ABA'} = \frac{{AA'}}{{AB}} = \frac{a}{a} = 1 \Rightarrow \widehat {ABA'} = {45^ \circ }\)
Vậy \(\left( {A'B,\left( {ABC} \right)} \right) = {45^ \circ }\).
c) \(CC' \bot \left( {ABC} \right) \Rightarrow CC' \bot BC,CC' \bot CM\)
Vậy \(\widehat {BCM}\) là góc nhị diện \(\left[ {B,CC',M} \right]\).
\(\Delta ABC\) đều \( \Rightarrow \widehat {BCM} = \frac{1}{2}\widehat {ACB} = {30^ \circ }\).
d) \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot CM\)
\(\Delta ABC\) đều \( \Rightarrow CM \bot AB\).
\( \Rightarrow CM \bot \left( {ABB'A'} \right)\)
\(\Delta ABC\) đều \( \Rightarrow CM = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\).
\(\left. \begin{array}{l}CC'\parallel AA'\\AA' \subset \left( {ABB'A'} \right)\end{array} \right\} \Rightarrow CC'\parallel \left( {ABB'A'} \right)\)
\( \Rightarrow d\left( {CC',\left( {ABB'A'} \right)} \right) = d\left( {C,\left( {ABB'A'} \right)} \right) = CM = \frac{{a\sqrt 3 }}{2}\)
e) \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot CM\)
\(\Delta ABC\) đều \( \Rightarrow CM \bot AB\).
\( \Rightarrow CM \bot \left( {ABB'A'} \right) \Rightarrow CM \bot A'M\)
\(CC' \bot \left( {ABC} \right) \Rightarrow CC' \bot CM\)
\( \Rightarrow d\left( {CC',A'M} \right) = CM = \frac{{a\sqrt 3 }}{2}\)
g) \({S_{\Delta ABC}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{4},h = AA' = a\)
\( \Rightarrow {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^2}\sqrt 3 }}{4}.a = \frac{{{a^3}\sqrt 3 }}{4}\)
\({S_{\Delta MBC}} = \frac{1}{2}{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{8},h = AA' = a\)
\( \Rightarrow {V_{A'.MBC}} = \frac{1}{3}{S_{\Delta MBC}}.AA' = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{8}.a = \frac{{{a^3}\sqrt 3 }}{{24}}\)
Bài 7 trang 116 SGK Toán 11 tập 2 - Cánh Diều yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Để giải quyết bài toán này một cách hiệu quả, chúng ta cần nắm vững các khái niệm và quy tắc đạo hàm cơ bản.
Bài toán thường yêu cầu tính đạo hàm của một hàm số tại một điểm cụ thể hoặc tìm đạo hàm của hàm số. Đôi khi, bài toán còn yêu cầu tìm khoảng đơn điệu của hàm số dựa trên đạo hàm.
Giả sử chúng ta có hàm số f(x) = x2 + 2x + 1. Để tìm đạo hàm của hàm số này, chúng ta áp dụng quy tắc đạo hàm của tổng và đạo hàm của lũy thừa:
f'(x) = 2x + 2
Khi giải các bài toán về đạo hàm, cần chú ý đến các quy tắc đạo hàm và áp dụng chúng một cách chính xác. Ngoài ra, cần kiểm tra lại kết quả để đảm bảo tính đúng đắn. Việc luyện tập thường xuyên sẽ giúp học sinh nắm vững kiến thức và kỹ năng giải các bài toán về đạo hàm.
Để củng cố kiến thức, học sinh có thể tự giải các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Ngoài ra, có thể tìm kiếm các bài tập trực tuyến để luyện tập thêm.
Bài 7 trang 116 SGK Toán 11 tập 2 - Cánh Diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải các bài toán về đạo hàm. Bằng cách nắm vững kiến thức và áp dụng các quy tắc đạo hàm một cách linh hoạt, học sinh có thể tự tin giải quyết các bài toán tương tự.
Quy tắc đạo hàm | Ví dụ |
---|---|
Đạo hàm của hằng số | (c)' = 0 |
Đạo hàm của xn | (xn)' = nxn-1 |
Đạo hàm của tổng/hiệu | (u ± v)' = u' ± v' |