Chào mừng các em học sinh đến với lời giải chi tiết Bài 1 trang 79 SGK Toán 11 tập 1 - Cánh Diều. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách nhanh chóng và hiệu quả.
Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.
Cho hàm số \(y = f(x)\) xác định trên khoảng \((a;b)\) và \({x_0} \in (a;b)\). Điều kiện cần và đủ để hàm số \(y = f(x)\) liên tục tại \({x_0}\) là:
Đề bài
Cho hàm số \(y = f(x)\) xác định trên khoảng \((a;b)\) và \({x_0} \in (a;b)\). Điều kiện cần và đủ để hàm số \(y = f(x)\) liên tục tại \({x_0}\) là:
A. \(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = f\left( {{x_0}} \right)\).
B. \(\mathop {\lim }\limits_{x \to x_0^ - } f(x) = f\left( {{x_0}} \right)\).
C. \(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = \mathop {\lim }\limits_{x \to x_0^ - } f(x)\).
D. \(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = \mathop {\lim }\limits_{x \to x_0^ - } f(x) = f\left( {{x_0}} \right)\).
Phương pháp giải - Xem chi tiết
Định nghĩa hàm số liên tục tại một điểm.
Cho hàm \(y = f(x)\) xác định trên khoảng \(\left( {a;b} \right)\), \({x_0} \in \left( {a;b} \right)\). Hàm số \(f(x)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = f({x_0})\).
\(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = \mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\)
Lời giải chi tiết
Theo lí thuyết ta chọn đáp án D.
Bài 1 trang 79 SGK Toán 11 tập 1 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về hàm số và đồ thị để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm cơ bản như tập xác định, tập giá trị, tính đơn điệu, cực trị của hàm số.
Bài 1 thường bao gồm các dạng bài tập sau:
Để giải quyết bài tập này một cách hiệu quả, học sinh cần:
Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích và giải chi tiết từng phần của bài tập.
Tập xác định của hàm số là tập hợp tất cả các giá trị của x sao cho hàm số có nghĩa. Để xác định tập xác định, chúng ta cần xem xét các điều kiện sau:
Tập giá trị của hàm số là tập hợp tất cả các giá trị của y mà hàm số có thể đạt được. Để tìm tập giá trị, chúng ta có thể sử dụng các phương pháp sau:
Để khảo sát sự biến thiên của hàm số, chúng ta cần:
Sau khi khảo sát sự biến thiên, chúng ta có thể vẽ đồ thị của hàm số bằng cách:
Giả sử hàm số y = x2 - 4x + 3. Hãy xác định tập xác định, tập giá trị, khảo sát sự biến thiên và vẽ đồ thị của hàm số này.
Giải:
Để củng cố kiến thức và kỹ năng giải bài tập, các em có thể luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác.
Bài 1 trang 79 SGK Toán 11 tập 1 - Cánh Diều là một bài tập quan trọng giúp các em hiểu rõ hơn về hàm số và đồ thị. Hy vọng rằng với lời giải chi tiết và phương pháp giải hiệu quả mà giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.