Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 11 tập 1 của giaitoan.edu.vn. Ở bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 1, trang 16 và 17 sách giáo khoa Toán 11 tập 1 - Cánh Diều.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong môn học.
Cho tam giác MNP có đường cao PQ (Hình 17).
a) Cho \(a = \frac{\pi}{6}, b = \frac{\pi}{3}\). Hãy tính sina, cosa, sinb, cosb và sin(a + b). Từ đó rút ra đẳng thức sin(a + b) = sina cosb + cosa sinb (*).
b) Tính sin(a – b) bằng cách biến đổi sin(a – b) = sin[a + (‒b)] và sử dụng công thức (*).
Phương pháp giải:
Dựa vào công thức sin, cos đã học để xác định
Lời giải chi tiết:
a) Với \(a = \frac{\pi}{6}\) ta có \(sin a = sin\frac{\pi}{6} =\frac{1}{2}\); \(cos a = cos\frac{\pi}{6} =\frac{\sqrt 3}{2}\)
Với \( b = \frac{\pi}{3}\) ta có \(sin b = sin\frac{\pi}{3} = \frac{\sqrt 3}{2}\); \(cosb = cos\frac{\pi}{3} = \frac{1}{2}\)
Ta có \(sin(a+b) = sin(\frac{\pi}{6}+\frac{\pi}{3})=sin \frac{\pi}{2}=1\)
\( sinacosb + cosasinb = \frac{1}{2}.\frac{1}{2}+\frac{\sqrt 3}{2}.\frac{\sqrt 3}{2}=\frac{1}{4}+\frac{3}{4}=1\)
Do đó sin(a+b) = sina.cosb +cosa.sinb (vì cùng bằng 1)
b) Ta có sin(a – b) = sin[a + (‒b)]
= sina cos(‒b) + cosa sin(‒b)
= sina cosb + cosa (‒sinb)
= sina cosb ‒ cosa sinb
Tính \(\sin \frac{\pi }{{12}}\)
Phương pháp giải:
Sử dụng công thức cộng đối với sin
Lời giải chi tiết:
Áp dụng công thức cộng, ta có:
\(\begin{array}{l}\sin \frac{\pi }{{12}} = \sin \left( {\frac{\pi }{4} - \frac{\pi }{6}} \right) = \sin \frac{\pi }{4}.\cos \frac{\pi }{6} - \cos \frac{\pi }{4}.\sin \frac{\pi }{6}\\ = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 3 }}{2} - \frac{{\sqrt 2 }}{2}.\frac{1}{2} = \frac{{\sqrt 6 - \sqrt 2 }}{4}\end{array}\)
a) Tính \(\cos \left( {a + b} \right)\) bằng cách biến đổi \(\cos \left( {a + b} \right) = \sin \left[ {\frac{\pi }{2} - \left( {a + b} \right)} \right] = \sin \left[ {\left( {\frac{\pi }{2} - a} \right) - b} \right]\) và sử dụng công thức cộng đối với sin
b) Tính \(\cos \left( {a - b} \right)\) bằng cách biến đổi \(\cos \left( {a - b} \right) = \cos \left[ {a + \left( { - b} \right)} \right]\) và sử dụng công thức \(\cos \left( {a + b} \right)\) có được ở câu a
Phương pháp giải:
Dựa vào công thức cộng sin đã chứng minh ở bên trên để tính
Lời giải chi tiết:
a) \(\cos \left( {a + b} \right) = \sin \left[ {\left( {\frac{\pi }{2} - a} \right) - b} \right] = \sin \left( {\frac{\pi }{2} - a} \right).\cos b - \cos \left( {\frac{\pi }{2} - a} \right).\sin b = \cos a.\cos b - \sin a.\sin b\)
b) \(\cos \left( {a - b} \right) = \cos \left[ {a + \left( { - b} \right)} \right] = \cos a.\cos \left( { - b} \right) - \sin a.\sin \left( { - b} \right) = \sin a.\sin b + \cos a.\cos b\)
Tính \(\cos {15^ \circ }\)
Phương pháp giải:
Sử dụng công thức cộng dối với cosin
Lời giải chi tiết:
Áp dụng công thức cộng, ta có:
\(\begin{array}{l}\cos {15^ \circ } = \cos ({45^ \circ } - {30^ \circ }) = \cos {45^ \circ }\cos {30^ \circ } + \sin {45^ \circ }\sin {30^ \circ }\\ = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 3 }}{2} + \frac{{\sqrt 2 }}{2}.\frac{1}{2} = \frac{{\sqrt 6 + \sqrt 2 }}{4}\end{array}\)
a) Sử dụng công thức cộng đối với sin và côsin, hãy tính \(\tan \left( {a + b} \right)\) theo tan a và tan b khi các biểu thức đều có nghĩa
b) Khi các biểu thức đều có nghĩa, hãy tính \(\tan \left( {a - b} \right)\) bằng cách biến đổi \(\tan \left( {a - b} \right) = \tan \left[ {a + \left( { - b} \right)} \right]\) và sử dụng công thức \(\tan \left( {a + b} \right)\) có được ở câu a.
Phương pháp giải:
Dựa vào công thức cộng sin, cos đã chứng minh ở bên trên để tính
Lời giải chi tiết:
a) \(\tan \left( {a + b} \right) = \frac{{\sin \left( {a + b} \right)}}{{\cos \left( {a + b} \right)}} = \frac{{\sin a.\cos b + \cos a.\sin b}}{{\cos a.\cos b - \sin a.\sin b}}\)
\(\begin{array}{l} = \frac{{\sin a.\cos b + \cos a.\cos b}}{{\cos a.\cos b - \sin a.\sin b}} = \frac{{\sin a.\cos b}}{{\cos a.\cos b - \sin a.\sin b}} + \frac{{\cos a.\sin b}}{{\cos a.\cos b - \sin a.\sin b}}\\ = \frac{{\frac{{\sin a.\cos b}}{{\cos a.\cos b}}}}{{\frac{{\cos a.\cos b - \sin a.\sin b}}{{\cos a.\cos b}}}} + \frac{{\frac{{\cos a.\sin b}}{{\cos a.\cos b}}}}{{\frac{{\cos a.\cos b - \sin a.\sin b}}{{\cos a.\cos b}}}} = \frac{{\tan a}}{{1 - \tan a.\tan b}} + \frac{{\tan b}}{{1 - \tan a.\tan b}}\\ = \frac{{\tan a + \tan b}}{{1 - \tan a.\tan b}}\end{array}\)
\( \Rightarrow \tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a.\tan b}}\)
b)
\(\tan \left( {a - b} \right) = \tan \left( {a + \left( { - b} \right)} \right) = \frac{{\tan a + \tan \left( { - b} \right)}}{{1 - \tan a.\tan \left( { - b} \right)}} = \frac{{\tan a - \tan b}}{{1 + \tan a.\tan b}}\)
Tính \(\tan {165^ \circ }\)
Phương pháp giải:
Sử dụng công thức cộng đối với tang
Lời giải chi tiết:
\(\begin{array}{l}\tan {165^ \circ } = \tan ({105^ \circ } + {60^ \circ }) = \frac{{\tan {{105}^ \circ } + \tan {{60}^ \circ }}}{{1 - \tan {{105}^ \circ }.\tan {{60}^ \circ }}}\\ = \frac{{ - 2 - \sqrt 3 + \sqrt 3 }}{{1 - ( - 2 - \sqrt 3 ).\sqrt 3 }} = - 2 + \sqrt 3 \end{array}\)
Mục 1 của chương trình Toán 11 tập 1 - Cánh Diều tập trung vào việc ôn tập và mở rộng kiến thức về hàm số và đồ thị hàm số. Các bài tập trong trang 16 và 17 SGK yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, đồng thời rèn luyện kỹ năng tư duy logic và phân tích.
Dưới đây là lời giải chi tiết cho từng bài tập trong trang 16 SGK Toán 11 tập 1 - Cánh Diều:
Nội dung bài tập: Cho hàm số y = f(x) có đồ thị như hình vẽ. Hãy xác định tập xác định và tập giá trị của hàm số.
Lời giải:
Nội dung bài tập: Tìm khoảng đồng biến, nghịch biến của hàm số y = x2.
Lời giải:
Hàm số y = x2 là hàm số bậc hai. Đạo hàm của hàm số là y' = 2x. Hàm số đồng biến trên khoảng (0, ∞) và nghịch biến trên khoảng (-∞, 0).
Dưới đây là lời giải chi tiết cho từng bài tập trong trang 17 SGK Toán 11 tập 1 - Cánh Diều:
Nội dung bài tập: Tìm điểm cực trị của hàm số y = x3 - 3x2 + 2.
Lời giải:
Đạo hàm của hàm số là y' = 3x2 - 6x. Giải phương trình y' = 0, ta được x = 0 và x = 2. Xét dấu đạo hàm, ta thấy hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
Nội dung bài tập: Vẽ đồ thị hàm số y = |x|.
Lời giải:
Hàm số y = |x| được định nghĩa là:
Đồ thị hàm số là hai đoạn thẳng hợp lại, tạo thành hình chữ V.
Để giải nhanh các bài tập về hàm số, các em có thể áp dụng một số mẹo sau:
Hy vọng rằng với lời giải chi tiết và các mẹo giải nhanh trên, các em học sinh đã có thể tự tin giải quyết các bài tập trong mục 1 trang 16, 17 SGK Toán 11 tập 1 - Cánh Diều. Chúc các em học tập tốt!