Bài 8 trang 80 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Cánh Diều, tập trung vào việc ôn tập chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về các loại hàm số, tính đơn điệu, cực trị và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 8 trang 80 SGK Toán 11 tập 1, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Một thấu kính hội tụ có tiêu cự là \(f\). Gọi \(d\) và \(d'\) lần lượt là khoảng cách từ một vật thật AB và từ ảnh \(A'B'\) của nó tới quang tâm \(O\) của thấu kính như Hình 19. Công thức thấu kính là \(\frac{1}{d} + \frac{1}{{d'}} = \frac{1}{f}\).
Đề bài
Một thấu kính hội tụ có tiêu cự là \(f\). Gọi \(d\) và \(d'\) lần lượt là khoảng cách từ một vật thật AB và từ ảnh \(A'B'\) của nó tới quang tâm \(O\) của thấu kính như Hình 19. Công thức thấu kính là \(\frac{1}{d} + \frac{1}{{d'}} = \frac{1}{f}\).
a) Tìm biểu thức xác định hàm số \(d' = \varphi (d)\).
b) Tìm \(\mathop {\lim }\limits_{d \to {f^ + }} \varphi (d),\mathop {\lim }\limits_{d \to {f^ - }} \varphi (d)\) và \(\mathop {\lim }\limits_{d \to f} \varphi (d)\). Giải thích ý nghĩa của các kết quả tìm được.
Phương pháp giải - Xem chi tiết
Sử dụng công thức \(\frac{1}{d} + \frac{1}{{d'}} = \frac{1}{f}\)
Lời giải chi tiết
a) Ta có \(\frac{1}{d} + \frac{1}{{d'}} = \frac{1}{f} \Leftrightarrow \frac{1}{{d'}} = \frac{1}{f} - \frac{1}{d} = \frac{{d - f}}{{df}} \Leftrightarrow d' = \frac{{df}}{{d - f}}\)
b)
Ta có: \(\left\{ \begin{array}{l}df > 0\\d - f > 0,d \to {f^ + }\end{array} \right.\)
\(\begin{array}{l}\mathop {\lim }\limits_{d \to {f^ + }} \varphi (d) = \mathop {\lim }\limits_{d \to {f^ + }} \frac{{df}}{{d - f}} = + \infty \end{array}\)
Ta có: \(\left\{ \begin{array}{l}df > 0\\d - f < 0,d \to {f^ - }\end{array} \right.\)
Do đó, \(\begin{array}{l}\mathop {\lim }\limits_{d \to {f^ - }} \varphi (d) = \mathop {\lim }\limits_{d \to {f^ - }} \frac{{df}}{{d - f}} = - \infty \end{array}\)
Vì \(\begin{array}{l}\mathop {\lim }\limits_{d \to {f^ + }} \varphi (d)\ne \mathop {\lim }\limits_{d \to {f^ - }} \varphi (d)\end{array}\)
Vậy nên không tồn tại \(\begin{array}{l}\mathop {\lim }\limits_{d \to f} \varphi (d) \end{array}\)
Giải thích ý nghĩa của các kết quả tìm được: Khi khoảng cách của vật tới thấu kính mà gần với tiêu cự thì khoảng cách ảnh của vật đến thấu kính ra xa vô tận nên lúc đó bằng mắt thường mình không nhìn thấy.
Bài 8 trang 80 SGK Toán 11 tập 1 - Cánh Diều là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số và ứng dụng của đạo hàm. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 8 yêu cầu học sinh giải các bài toán liên quan đến việc xét tính đơn điệu của hàm số, tìm cực trị của hàm số và vẽ đồ thị hàm số. Các bài tập thường có dạng:
Để giải Bài 8 trang 80 SGK Toán 11 tập 1 - Cánh Diều, học sinh cần nắm vững các kiến thức sau:
Ví dụ minh họa:
Xét hàm số y = x3 - 3x2 + 2. Ta có:
Để tìm điểm cực trị, ta giải phương trình y' = 0:
3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2
Ta có:
Vậy hàm số có điểm cực đại tại x = 0, ycđ = 2 và điểm cực tiểu tại x = 2, yct = -2.
Để giải các bài tập tương tự Bài 8 trang 80 SGK Toán 11 tập 1 - Cánh Diều, học sinh nên thực hiện theo các bước sau:
Khi giải Bài 8 trang 80 SGK Toán 11 tập 1 - Cánh Diều, học sinh cần chú ý:
Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh sẽ nắm vững kiến thức và tự tin giải quyết Bài 8 trang 80 SGK Toán 11 tập 1 - Cánh Diều một cách hiệu quả.