Chào mừng bạn đến với bài học về Lý thuyết Giới hạn của dãy số, một phần quan trọng trong chương trình Toán 11 Cánh Diều. Bài viết này sẽ cung cấp cho bạn kiến thức nền tảng, các định nghĩa, tính chất và ví dụ minh họa để bạn hiểu rõ hơn về khái niệm giới hạn của dãy số.
Giaitoan.edu.vn tự hào là nền tảng học toán online uy tín, cung cấp tài liệu học tập chất lượng và hỗ trợ học sinh ôn tập hiệu quả.
1, Giới hạn hữu hạn của dãy số
1, Giới hạn hữu hạn của dãy số
- Dãy số \(\left( {{u_n}} \right)\) có giới hạn 0 khi n dần tới dương vô cực, nếu \(\left| {{u_n}} \right|\) có thể nhỏ hơn một số dương bé tùy ý , kể tử một số hạng nào đó trở đi.
Kí hiệu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\) hay \({u_n} \to 0\) khi \(n \to + \infty \) hay \(\lim {u_n} = 0\).
- Dãy số \(\left( {{u_n}} \right)\)có giới hạn là số thực a khi n dần tới dương vô cực, nếu \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} - a} \right) = 0\), kí hiệu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = a\)hay \({u_n} \to a\) khi \(n \to + \infty \)hay \(\lim {u_n} = a\).
* Chú ý: Nếu \({u_n} = c\) (c là hằng số) thì \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = c\)
2. Một số giới hạn cơ bản
+ \(\lim \frac{1}{n} = 0,\lim \frac{1}{{{n^k}}} = 0,k \in \mathbb{Z}.\)
+ \(\lim \frac{c}{n} = 0,\lim \frac{c}{{{n^k}}} = 0,k \in \mathbb{Z}\), c là hằng số.
+ Nếu \(\left| q \right| < 1\) thì \(\lim {q^n} = 0\)
+ \(\lim {\left( {1 + \frac{1}{n}} \right)^n} = e\)
3. Định lí về giới hạn hữu hạn của dãy số
a, Nếu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = a,\mathop {\lim }\limits_{n \to + \infty } {v_n} = b\) thì
\(\mathop {\lim }\limits_{n \to + \infty } ({u_n} \pm {v_n}) = a \pm b\)
\(\mathop {\lim }\limits_{n \to + \infty } ({u_n}.{v_n}) = a.b\)
\(\mathop {\lim }\limits_{n \to + \infty } (\frac{{{u_n}}}{{{v_n}}}) = \frac{a}{b}\left( {b \ne 0} \right)\)
b, Nếu \({u_n} \ge 0\) thì với mọi n và \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = a\) thì \(a \ge 0\) và \(\mathop {\lim }\limits_{n \to + \infty } \sqrt {{u_n}} = \sqrt a \).
3. Tổng của cấp số nhân lùi vô hạn
Cấp số nhân lùi vô hạn \({u_1},{u_1}q,...,{u_1}{q^{n - 1}},...\) có công bội q thỏa mãn \(\left| q \right| < 1\) được gọi là cấp số nhân lùi vô hạn.
Tổng của cấp số nhân lùi vô hạn là:
\(S = \frac{{{u_1}}}{{1 - q}}\left( {\left| q \right| < 1} \right)\)
4. Giới hạn vô cực
- Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( + \infty \)khi \(n \to + \infty \) nếu \({u_n}\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } {u_n} = + \infty \) hay \({u_n} \to + \infty \) khi \(n \to + \infty \).
- Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( - \infty \)khi \(n \to + \infty \) nếu \(\mathop {\lim }\limits_{x \to + \infty } \left( { - {u_n}} \right) = + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } {u_n} = - \infty \) hay \({u_n} \to - \infty \) khi \(n \to + \infty \).
*Nhận xét:
Giới hạn của dãy số là một khái niệm cơ bản và quan trọng trong giải tích. Nó cho phép chúng ta mô tả hành vi của một dãy số khi số hạng của nó tiến tới vô cùng. Trong chương trình Toán 11 Cánh Diều, học sinh sẽ được làm quen với khái niệm này thông qua các định nghĩa, tính chất và ứng dụng thực tế.
Một dãy số (un) được gọi là có giới hạn L nếu với mọi số dương ε (epsilon) nhỏ tùy ý, tồn tại một số tự nhiên N sao cho với mọi n > N, ta có |un - L| < ε. Ký hiệu: limn→∞ un = L.
Trong đó:
Các tính chất quan trọng của giới hạn dãy số bao gồm:
Một số dạng giới hạn thường gặp:
Ví dụ 1: Tìm giới hạn của dãy số un = 2n + 1.
limn→∞ (2n + 1) = ∞
Ví dụ 2: Tìm giới hạn của dãy số un = 1/n.
limn→∞ (1/n) = 0
Ví dụ 3: Tìm giới hạn của dãy số un = (2n + 1) / (n + 2).
limn→∞ (2n + 1) / (n + 2) = limn→∞ (2 + 1/n) / (1 + 2/n) = 2/1 = 2
Khái niệm giới hạn dãy số có nhiều ứng dụng trong toán học và các lĩnh vực khác, bao gồm:
Hãy tự giải các bài tập sau để củng cố kiến thức về giới hạn dãy số:
Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về Lý thuyết Giới hạn của dãy số - SGK Toán 11 Cánh Diều. Chúc bạn học tập tốt!