Bài 2 trang 38 SGK Toán 11 tập 2 thuộc chương trình Toán 11 Cánh Diều, tập trung vào việc rèn luyện kỹ năng giải các bài toán liên quan đến phép biến hóa lượng giác. Bài tập này đòi hỏi học sinh nắm vững kiến thức về công thức lượng giác cơ bản và khả năng vận dụng linh hoạt vào giải quyết vấn đề.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Tính:
Đề bài
Tính:
a) \({8^{{{\log }_2}5}}\)
b) \({\left( {\frac{1}{{10}}} \right)^{\log 81}}\)
c) \({5^{{{\log }_{25}}16}}\)
Phương pháp giải - Xem chi tiết
Áp dụng tính chất lũy thừa để tính
Lời giải chi tiết
a) \({8^{{{\log }_2}5}} = {2^{3{{\log }_2}5}} = {2^{{{\log }_2}{5^3}}} = {5^3}\)
b) \({\left( {\frac{1}{{10}}} \right)^{\log 81}} = {10^{ - 1\log 81}} = {10^{\log {{81}^{ - 1}}}} = {81^{ - 1}} = \frac{1}{{81}}\)
c) \({5^{{{\log }_{25}}16}} = {5^{{{\log }_{{5^2}}}16}} = {5^{\frac{1}{2}{{\log }_5}16}} = {5^{{{\log }_5}{{16}^{\frac{1}{2}}}}} = {16^{\frac{1}{2}}} = 4\)
Bài 2 yêu cầu chúng ta giải các phương trình lượng giác. Để giải quyết bài toán này, chúng ta cần nắm vững các công thức lượng giác cơ bản và các phương pháp giải phương trình lượng giác thường gặp.
Trước khi bắt đầu giải, hãy đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Xác định các hàm lượng giác cần sử dụng và các công thức liên quan. Phân tích cấu trúc của phương trình để lựa chọn phương pháp giải phù hợp.
Câu a: Giải phương trình cos(x) = 1/2
Câu b: Giải phương trình sin(x) = √3/2
Câu c: Giải phương trình tan(x) = 1
Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự sau:
Bài 2 trang 38 SGK Toán 11 tập 2 - Cánh Diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải phương trình lượng giác. Bằng cách nắm vững các công thức lượng giác và phương pháp giải, học sinh có thể tự tin giải quyết các bài toán tương tự.
Hy vọng với lời giải chi tiết và các lưu ý trên, các bạn học sinh sẽ hiểu rõ hơn về bài toán này và đạt kết quả tốt trong học tập.