Chào mừng các em học sinh đến với lời giải chi tiết Bài 3 trang 76 SGK Toán 11 tập 2 - Cánh Diều. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất trong môn Toán.
Tính đạo hàm của mỗi hàm số sau:
Đề bài
Tính đạo hàm của mỗi hàm số sau:
a) \(y = \left( {{x^2} + 2x} \right)\left( {{x^3} - 3x} \right)\)
b) \(y = \frac{1}{{ - 2x + 5}}\)
c) \(y = \sqrt {4x + 5} \)
d) \(y = \sin x\cos x\)
e) \(y = x{e^x}\)
f) \(y = {\ln ^2}x\)
Phương pháp giải - Xem chi tiết
Dựa vào công thức đạo hàm của các hàm để tính.
Lời giải chi tiết
a) \(y = \left( {{x^2} + 2x} \right)\left( {{x^3} - 3x} \right)\)
\( \Rightarrow y' = \left( {2x + 2} \right)\left( {{x^3} - 3x} \right) + \left( {{x^2} + 2x} \right)\left( {3{x^2} - 3} \right)\)
\( = 2{x^4} + 2{x^3} - 6{x^2} - 6x + 3{x^4} + 6{x^3} - 3{x^2} - 6x\)
\( = 5{x^4} + 8{x^3} - 9{x^2} - 12x\).
b) \(y = \frac{1}{{ - 2x + 5}} \Rightarrow y' = \frac{2}{{{{\left( {2x + 5} \right)}^2}}}\).
c) \(y = \sqrt {4x + 5} \Rightarrow y' = \frac{4}{{2\sqrt {4x + 5} }}\).
d) \(y = \sin x\cos x \Rightarrow y' = \cos x.\cos x - \sin x.\sin x = {\cos ^2}x - {\sin ^2}x = \cos 2x\).
e) \(y = x{e^x} \Rightarrow y' = {e^x} + x{e^x}\).
f) \(y = {\ln ^2}x \Rightarrow y' = \frac{{\left( { - 1} \right)}}{{{x^2}}} = - \frac{1}{{{x^2}}}\).
Bài 3 trang 76 SGK Toán 11 tập 2 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị của hàm số.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 3 trang 76 SGK Toán 11 tập 2 - Cánh Diều một cách hiệu quả, các em cần thực hiện theo các bước sau:
Giả sử hàm số cần khảo sát là: y = x3 - 3x2 + 2
Bước 1: Tính đạo hàm bậc nhất: y' = 3x2 - 6x
Bước 2: Giải phương trình y' = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2
Bước 3: Tính đạo hàm bậc hai: y'' = 6x - 6
Bước 4: Tại x = 0, y'' = -6 < 0 => Hàm số đạt cực đại tại x = 0. Giá trị cực đại là y = 2.
Bước 5: Tại x = 2, y'' = 6 > 0 => Hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là y = -2.
Trong quá trình giải bài tập, các em cần chú ý:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để hiểu rõ hơn về đạo hàm và ứng dụng của đạo hàm, các em có thể tham khảo các tài liệu sau:
Bài 3 trang 76 SGK Toán 11 tập 2 - Cánh Diều là một bài tập quan trọng giúp các em củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết này, các em sẽ giải quyết bài tập một cách dễ dàng và hiệu quả. Chúc các em học tập tốt!