Bài 7 trang 94 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Cánh diều, tập trung vào việc giải các bài toán liên quan đến đạo hàm của hàm số. Bài học này giúp học sinh nắm vững kiến thức cơ bản và kỹ năng giải quyết các bài tập thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh tự tin chinh phục bài tập và nâng cao kết quả học tập.
Cho hình tứ diện ABCD. Gọi I là trung điểm cạnh CD. Gọi M, N lần lượt là trọng tâm các tam giác BCD, CDA.
Đề bài
Cho hình tứ diện ABCD. Gọi I là trung điểm cạnh CD. Gọi M, N lần lượt là trọng tâm các tam giác BCD, CDA.
a) Chứng minh rằng các điểm M, N thuộc mặt phẳng (ABI)
b) Gọi G là giao điểm của AM và BN. Chứng minh rằng: \(\frac{{GM}}{{GA}} = \frac{{GN}}{{GB}} = \frac{1}{3}\)
c) Gọi P, Q lần lượt là trọng tâm các tam giác DAB, ABC. Chứng minh rằng các đường thẳng CP, DQ cùng đi qua điểm G và \(\frac{{GP}}{{GC}} = \frac{{GQ}}{{GD}} = \frac{1}{3}\)
Phương pháp giải - Xem chi tiết
- Muốn tìm giao điểm của một đường thẳng a và mặt phẳng (P), ta tìm giao điểm của a và một đường thẳng b nằm trong (P):
\(\left\{ \begin{array}{l}a \cap b = M\\b \subset (P)\end{array} \right. \Rightarrow M = a \cap (P)\)
Bước 1: Xác định mp (Q) chứa a
Bước 2: Tìm giao tuyến \(b = (P) \cap (Q)\)
Bước 3: Trong \((Q):a \cap b = M\) mà \(b \subset (P)\)suy ra \(M = a \cap (P)\)
Lời giải chi tiết
a) Ta có: M là trọng tâm của tam giác BCD
Nên M nằm trên trung tuyến BI (1)
Ta có: N là trọng tâm của tam giác ACD
Nên N nằm trên trung tuyến AI (2)
Từ (1) và (2) suy ra M và N thuộc mp (ABI)
b) Gọi H, K lần lượt là trung điểm của AG, BG
Ta có: HK // AB
AB // MN
Suy ra MN // HK
Theo định lý Ta-let, ta có: \(\frac{{GM}}{{GH}} = \frac{{GN}}{{GK}} = \frac{{MN}}{{HK}}(1)\)
Ta có:\(\frac{{HK}}{{AB}} = \frac{1}{2},\frac{{MN}}{{AB}} = \frac{1}{3}\)
Do đó \(\frac{{MN}}{{AB}}:\frac{{HK}}{{AB}} = \frac{2}{3} \Rightarrow \frac{{MN}}{{HK}} = \frac{2}{3}(2)\)
Từ (1) và (2) suy ra\(\frac{{GM}}{{GH}} = \frac{2}{3}GH = \frac{1}{2}GA \Rightarrow \frac{{GM}}{{\frac{1}{2}GA}} = \frac{2}{3} \Rightarrow \frac{{GM}}{{GA}} = \frac{1}{3}\)
Chứng minh tương tự ta được\(\frac{{GN}}{{GB}} = \frac{1}{3}\)
c) Gọi H, K lần lượt là trung điểm của BC, BD
Tam giác AHD có:\(\frac{{HM}}{{HD}} = \frac{{HQ}}{{HA}} = \frac{1}{3}\)
Suy ra: QM // AD
Do đó, tam giác QGM đồng dạng với tam giác DGA
Nên D, G, Q thẳng hàng
Ta có: QM // AD nên \(\frac{{QM}}{{AD}} = \frac{{HM}}{{HD}} = \frac{{HQ}}{{HA}} = \frac{1}{3}\)
Mà \(\frac{{QM}}{{AD}} = \frac{{QG}}{{GD}}\)
Do đó:\(\frac{{QG}}{{GD}} = \frac{1}{3}\)
Chứng minh tương tự ta được\(\frac{{GP}}{{GC}} = \frac{1}{3}\)
Suy ra điều cần chứng minh.
Bài 7 trang 94 SGK Toán 11 tập 1 - Cánh diều yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Để hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích từng phần của bài toán.
Bài tập này thường bao gồm các dạng bài sau:
Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các công thức và quy tắc đạo hàm cơ bản. Dưới đây là một số hướng dẫn chi tiết:
Ví dụ: Tính đạo hàm của hàm số f(x) = x2 + 2x - 1.
Giải:
f'(x) = 2x + 2
Đạo hàm là một khái niệm quan trọng trong Toán học, có nhiều ứng dụng trong các lĩnh vực khác nhau như Vật lý, Kinh tế, Kỹ thuật,... Việc hiểu rõ về đạo hàm sẽ giúp học sinh giải quyết các bài toán phức tạp hơn và có cái nhìn sâu sắc hơn về thế giới xung quanh.
Để củng cố kiến thức, học sinh có thể tự giải các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Ngoài ra, học sinh cũng có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học luyện thi để nâng cao trình độ.
Bài 7 trang 94 SGK Toán 11 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm vào giải quyết các bài toán thực tế. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, học sinh sẽ tự tin chinh phục bài tập này và đạt kết quả tốt trong môn Toán.