Bài 5 trang 38 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Cánh Diều, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này đòi hỏi học sinh phải nắm vững các công thức đạo hàm cơ bản và kỹ năng giải quyết bài toán.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 5 trang 38, giúp các em học sinh hiểu rõ bản chất của bài toán và rèn luyện kỹ năng giải toán.
Trong nuôi trồng thủy sản, độ pH của môi trường nước sẽ ảnh hưởng đến sức khỏe và sự phát triển của thủy sản.
Đề bài
Trong nuôi trồng thủy sản, độ pH của môi trường nước sẽ ảnh hưởng đến sức khỏe và sự phát triển của thủy sản. Độ pH thích hợp cho nước trong đầm nuôi tôm sú là từ 7,2 đến 8,8 và tốt nhất là trong khoảng từ 7,8 đến 8,5. Phân tích nồng độ \([{H^ + }]\) trong một đầm nuôi tôm sú, ta thu được \([{H^ + }] = {8.10^{ - 8}}\). Hỏi độ pH của đầm đó có thích hợp cho tôm sú phát triển không?
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính độ pH đã cho ở bài mở đầu để tính
Lời giải chi tiết
\(pH = - \log \left[ {{H^ + }} \right] = - \log {8.10^{ - 8}} \approx 7,1\)
=> Độ pH không phù hợp cho tôm sú phát triển.
Bài 5 trang 38 SGK Toán 11 tập 2 - Cánh Diều là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 5 yêu cầu học sinh giải các bài toán liên quan đến việc tính đạo hàm của hàm số, tìm điểm cực trị, và khảo sát hàm số. Các bài tập thường có dạng:
Để giải bài 5 trang 38, học sinh cần thực hiện các bước sau:
Giả sử hàm số f(x) = x3 - 3x2 + 2. Ta sẽ giải bài tập này theo các bước trên:
Khi giải bài tập về đạo hàm, học sinh cần lưu ý các điểm sau:
Để rèn luyện kỹ năng giải bài tập về đạo hàm, học sinh có thể tham khảo các bài tập tương tự trong SGK Toán 11 tập 2 - Cánh Diều và các tài liệu luyện tập khác.
Bài 5 trang 38 SGK Toán 11 tập 2 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Bằng cách thực hiện theo các bước hướng dẫn và luyện tập thường xuyên, học sinh có thể giải quyết bài tập này một cách hiệu quả.
Công thức đạo hàm cơ bản | Ví dụ |
---|---|
(xn)' = nxn-1 | (x2)' = 2x |
(sin x)' = cos x | (sin x)' = cos x |
(cos x)' = -sin x | (cos x)' = -sin x |