Chào mừng bạn đến với bài giải Bài 4 trang 106 SGK Toán 11 tập 2 - Cánh Diều trên giaitoan.edu.vn. Bài viết này cung cấp lời giải chi tiết, chính xác, giúp bạn hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ bạn học toán hiệu quả và đạt kết quả tốt nhất.
Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\), đáy \(ABCD\) là hình vuông cạnh \(a\), \(SA = a\) (Hình 78).
Đề bài
Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\), đáy \(ABCD\) là hình vuông cạnh \(a\), \(SA = a\) (Hình 78).
a) Tính khoảng cách từ điểm \(S\) đến đường thẳng \(C{\rm{D}}\).
b) Tính khoảng cách từ điểm \(D\) đến mặt phẳng \(\left( {SAB} \right)\).
c) Tính khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SCD} \right)\).
Phương pháp giải - Xem chi tiết
‒ Cách tính khoảng cách từ một điểm đến một đường thẳng: Tính khoảng cách từ điểm đó đến hình chiếu của nó lên đường thẳng.
‒ Cách tính khoảng cách từ một điểm đến một mặt phẳng: Tính khoảng cách từ điểm đó đến hình chiếu của nó lên mặt phẳng.
Lời giải chi tiết
a) \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot C{\rm{D}}\)
\(ABCD\) là hình vuông \( \Rightarrow A{\rm{D}} \bot C{\rm{D}}\)
\(\begin{array}{l} \Rightarrow C{\rm{D}} \bot \left( {SA{\rm{D}}} \right) \Rightarrow C{\rm{D}} \bot S{\rm{D}}\\ \Rightarrow d\left( {S,C{\rm{D}}} \right) = S{\rm{D}} = \sqrt {S{A^2} + A{{\rm{D}}^2}} = a\sqrt 2 \end{array}\)
b) \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot A{\rm{D}}\)
\(ABCD\) là hình vuông \( \Rightarrow A{\rm{B}} \bot A{\rm{D}}\)
\( \Rightarrow A{\rm{D}} \bot \left( {SA{\rm{B}}} \right) \Rightarrow d\left( {D,\left( {SAB} \right)} \right) = A{\rm{D}} = a\)
c) Kẻ \(AH \bot S{\rm{D}}\left( {H \in S{\rm{D}}} \right)\).
\(C{\rm{D}} \bot \left( {SA{\rm{D}}} \right) \Rightarrow C{\rm{D}} \bot AH\)
\( \Rightarrow AH \bot \left( {SC{\rm{D}}} \right) \Rightarrow d\left( {A,\left( {SC{\rm{D}}} \right)} \right) = AH\)
Tam giác \(SAD\) vuông tại \(A\) có đường cao \(AH\)
\( \Rightarrow AH = \frac{{SA.A{\rm{D}}}}{{S{\rm{D}}}} = \frac{{a\sqrt 2 }}{2}\)
Vậy \(d\left( {A,\left( {SC{\rm{D}}} \right)} \right) = \frac{{a\sqrt 2 }}{2}\).
Bài 4 trang 106 SGK Toán 11 tập 2 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào kiến thức về đạo hàm của hàm số. Bài tập này yêu cầu học sinh vận dụng các công thức và quy tắc đạo hàm đã học để tính đạo hàm của các hàm số cụ thể.
Bài 4 thường bao gồm các hàm số có dạng đa thức, phân thức, hoặc hàm hợp. Để giải bài tập này, học sinh cần:
Để minh họa, chúng ta sẽ xét một ví dụ cụ thể. Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = 2x3 - 5x2 + 3x - 1.
Áp dụng quy tắc đạo hàm của tổng và hiệu, ta có:
f'(x) = (2x3)' - (5x2)' + (3x)' - (1)'
Sử dụng quy tắc đạo hàm của hàm số lũy thừa, ta có:
(2x3)' = 2 * 3x2 = 6x2
(5x2)' = 5 * 2x = 10x
(3x)' = 3
(1)' = 0
Vậy, f'(x) = 6x2 - 10x + 3.
Ngoài dạng bài tập tính đạo hàm của hàm số đơn giản như trên, Bài 4 trang 106 SGK Toán 11 tập 2 - Cánh Diều còn có thể xuất hiện các dạng bài tập phức tạp hơn, như:
Để giải các dạng bài tập này, học sinh cần nắm vững các quy tắc đạo hàm và luyện tập thường xuyên.
Khi giải bài tập về đạo hàm, học sinh cần lưu ý:
Đạo hàm có rất nhiều ứng dụng trong thực tế, như:
Để củng cố kiến thức về đạo hàm, bạn có thể luyện tập thêm các bài tập sau:
Bài 4 trang 106 SGK Toán 11 tập 2 - Cánh Diều là một bài tập quan trọng giúp học sinh nắm vững kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các lưu ý trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!