Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 11 tập 2 của giaitoan.edu.vn. Ở bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 1 trang 48, 49, 50 sách giáo khoa Toán 11 tập 2 - Cánh Diều.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong học tập.
Trong bài toán ở phần mở đầu, giả sử
Trong bài toán ở phần mở đầu, giả sử r = 1,14%/năm
a) Viết phương trình thể hiện dân số sau t năm gấp đôi dân số ban đầu
b) Phương trình vừa tìm được có ẩn là gì và nằm ở vị trí nào của lũy thừa?
Phương pháp giải:
Dựa vào công thức đã tìm được ở bài mở đầu rồi tính
Lời giải chi tiết:
a) Phương trình thể hiện dân số sau t năm gấp đôi dân số ban đầu là:
\(S = 2S.{e^{1,14.t}} \Leftrightarrow 2{e^{1,14t}} = 1 \Leftrightarrow {e^{1,14t}} = \frac{1}{2}\)
b) Phương trình vừa tìm được có ẩn là t và nằm ở vị trí mũ của lũy thừa
Cho hai ví dụ về phương trình mũ
Phương pháp giải:
Dựa vào kiến thức vừa học để xác định phương trình mũ
Lời giải chi tiết:
2 ví dụ về phương trình mũ
a) Vẽ đồ thị hàm số \(y = {3^x}\) và đường thẳng y = 7
b) Nhận xét về số giao điểm của hai đồ thị trên. Từ đó, hãy nêu nhận xét về số nghiệm của phương trình \({3^x} = 7\)
Phương pháp giải:
Dựa vào kiến thức đã học ở bài trước để vẽ đồ thị
Lời giải chi tiết:
a) Ta có bảng sau:
Ta có đồ thị sau:
b, Hai đồ thị \(y = {3^x}\) và y = 7 có 1 giao điểm. Vậy số nghiệm của phương trình \({3^x} = 7\) là 1
Giải mỗi phương trình sau:
a) \({9^{16 - x}} = {27^{x + 4}}\)
b) \({16^{x - 2}} = 0,{25.2^{ - x + 4}}\)
Phương pháp giải:
Dựa vào kiến thức vừa học về phương trình mũ để giải
Lời giải chi tiết:
a) \({9^{16 - x}} = {27^{x + 4}}\)
\(\begin{array}{l} \Leftrightarrow {3^{2.\left( {16 - x} \right)}} = {3^{3.\left( {x + 4} \right)}}\\ \Leftrightarrow 2.\left( {16 - x} \right) = 3.\left( {x + 4} \right)\\ \Leftrightarrow 32 - 2x - 3x - 12 = 0\\ \Leftrightarrow - 5x = - 20\\ \Leftrightarrow x = 4\end{array}\)
b) \({16^{x - 2}} = 0,{25.2^{ - x + 4}}\)
\(\begin{array}{l} \Leftrightarrow {2^{4\left( {x - 2} \right)}} = 0,{25.2^{ - x + 4}}\\ \Leftrightarrow {2^{4x - 8 + x - 4}} = 0,25\\ \Leftrightarrow {2^{5x - 12}} = 0,25\\ \Leftrightarrow 5x - 12 = {\log _2}0,25\\ \Leftrightarrow 5x - 12 = - 2\\ \Leftrightarrow x = 2\end{array}\)
Chỉ số hay độ pH của một dung dịch được tính theo công thức: \(pH = - \log [{H^ + }]\) (Trong đó \([{H^ + }]\) chỉ nống độ hydrogen). Đo chỉ số pH của một mẫu nước sông, ta có kết quả là pH = 6,1.
a) Viết phương trình thể hiện nồng độ x của ion hydrogen \([{H^ + }]\) trong mẫu nước sông đó.
b) Phương trình vừa tìm được có ẩn là gì và nằm ở vị trí nào của lôgarit?
Phương pháp giải:
Dựa vào công thức tính pH để biểu diễn
Lời giải chi tiết:
a) Ta có: \( - \log [{H^ + }] = 6.1 \Leftrightarrow - \log x = 6,1\)
b) Phương trình vừa tìm được có ẩn là x và nằm ở vị trí hệ số của logarit
Cho hai ví dụ về phương trình logarit
Phương pháp giải:
Dựa vào dạng phương trình logarit vừa học để làm
Lời giải chi tiết:
a) Vẽ đồ thị hàm số \(y = {\log _4}x\) và đường thẳng y = 5
b) Nhận xét về số giao điểm của hai đồ thị trên. Từ đó, hãy nêu nhận xét về số nghiệm của phương trình \({\log _4}x = 5\)
Phương pháp giải:
Dựa vào cách vẽ đồ thị ở bài trên để vẽ hàm
Lời giải chi tiết:
a) Đồ thị hai hàm số:
b, Hai hàm số có 1 giao điểm. Phương trình \({\log _4}x = 5\) có 1 nghiệm
Giải mỗi phương trình sau:
a) \({\log _5}\left( {2x - 4} \right) + {\log _{\frac{1}{5}}}\left( {x - 1} \right) = 0\).
b) \({\log _2}x + {\log _4}x = 3\).
Phương pháp giải:
Dựa vào công thức vừa học để giải phương trình.
Lời giải chi tiết:
a) \({\log _5}\left( {2x - 4} \right) + {\log _{\frac{1}{5}}}\left( {x - 1} \right) = 0\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}x > 2\\{\log _5}\left( {2x - 4} \right) - {\log _5}\left( {x - 1} \right) = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x > 2\\{\log _5}\left( {\frac{{2x - 4}}{{x - 1}}} \right) = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x > 2\\\frac{{2x - 4}}{{x - 1}} = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x > 2\\2x - 4 = x - 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x > 2\\x = 3\end{array} \right.\\ \Leftrightarrow x = 3\end{array}\)
Vậy phương trình có nghiệm x = 3.
b) \({\log _2}x + {\log _4}x = 3\)
\(\begin{array}{*{20}{l}}\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x > 0}\\{{{\log }_2}x + {{\log }_{{2^2}}}x = 3}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x > 0}\\{{{\log }_2}x + \frac{1}{2}{{\log }_2}x = 3}\end{array}} \right.\end{array}\\{ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x > 0}\\{\frac{3}{2}{{\log }_2}x = 3}\end{array}} \right.}\\{ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x > 0}\\{{{\log }_2}x = 2}\end{array}} \right.}\\{ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x > 0}\\{x = 4}\end{array}} \right.}\\{ \Leftrightarrow x = 4}\end{array}\)
Vậy phương trình có nghiệm x = 4.
Mục 1 của chương trình Toán 11 tập 2 - Cánh Diều tập trung vào các kiến thức về phép biến hình. Cụ thể, các em sẽ được làm quen với các phép biến hình cơ bản như phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm. Việc nắm vững các kiến thức này là nền tảng quan trọng để học tập các chương trình Toán học ở các lớp trên.
Bài tập này yêu cầu các em xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép tịnh tiến. Để giải bài tập này, các em cần hiểu rõ định nghĩa của phép tịnh tiến và cách thực hiện phép tịnh tiến trong mặt phẳng tọa độ.
Bài tập này yêu cầu các em xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép quay. Để giải bài tập này, các em cần hiểu rõ định nghĩa của phép quay và cách thực hiện phép quay trong mặt phẳng tọa độ.
Bài tập này yêu cầu các em xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép đối xứng trục. Để giải bài tập này, các em cần hiểu rõ định nghĩa của phép đối xứng trục và cách thực hiện phép đối xứng trục trong mặt phẳng tọa độ.
Lưu ý: Khi tìm ảnh của một điểm qua phép đối xứng trục, các em cần xác định đường thẳng đối xứng và tìm điểm đối xứng của điểm đã cho qua đường thẳng đó.
Bài tập này yêu cầu các em xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép đối xứng tâm. Để giải bài tập này, các em cần hiểu rõ định nghĩa của phép đối xứng tâm và cách thực hiện phép đối xứng tâm trong mặt phẳng tọa độ.
Ví dụ: Cho điểm C(2; -4) và phép đối xứng tâm I(1; 1). Tìm tọa độ điểm C' là ảnh của C qua phép đối xứng tâm.
Lời giải: C'(2*1 - 2; 2*1 - (-4)) = C'(0; 6)
Để giải các bài tập về phép biến hình một cách hiệu quả, các em cần:
Phép biến hình có rất nhiều ứng dụng trong thực tế, ví dụ như:
Hy vọng rằng với lời giải chi tiết và những hướng dẫn trên, các em đã có thể tự tin giải các bài tập trong mục 1 trang 48, 49, 50 SGK Toán 11 tập 2 - Cánh Diều. Chúc các em học tập tốt!