Logo Header
  1. Môn Toán
  2. Bài 14 trang 41 SGK Toán 11 tập 1 - Cánh diều

Bài 14 trang 41 SGK Toán 11 tập 1 - Cánh diều

Bài 14 trang 41 SGK Toán 11 tập 1 - Cánh diều: Giải pháp học tập hiệu quả

Chào mừng bạn đến với bài giải Bài 14 trang 41 SGK Toán 11 tập 1 - Cánh diều trên giaitoan.edu.vn. Bài viết này cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, hỗ trợ bạn trong quá trình chinh phục môn Toán.

Một cây cầu có dạng cung OA của đồ thị hàm số (y = 4,8sin frac{x}{9}) và được mô tả trong hệ trục tọa độ với đơn vị trục là mét như ở Hình 40.

Đề bài

Một cây cầu có dạng cung OA của đồ thị hàm số \(y = 4,8\sin \frac{x}{9}\) và được mô tả trong hệ trục tọa độ với đơn vị trục là mét như ở Hình 40.

a) Giả sử chiều rộng của con sông là độ dài đoạn thẳng OA. Tìm chiều rộng đó (Làm tròn kết quả đến hàng phần mười)

b) Một sà lan chở khối hàng hóa được xếp thành hình hộp chữ nhật với độ cao 3,6m so với mực nước sông sao cho sà lan có thể đi qua được gầm cầu. Chứng minh rằng chiều rộng của khối hàng hóa đó phải nhỏ hơn 13,1m.

c) Một sà lan khác cũng chở khối hàng hóa được xếp thành hình hộp chữ nhật với chiều rộng của khối hàng hóa đó là 9m sao cho sà lan có thể đi qua được gầm cầu. Chứng minh rằng chiều cao của khối hàng hóa đó phải nhỏ hơn 4,3m

Bài 14 trang 41 SGK Toán 11 tập 1 - Cánh diều 1

Phương pháp giải - Xem chi tiếtBài 14 trang 41 SGK Toán 11 tập 1 - Cánh diều 2

Dựa vào hàm số lượng giác sin

Lời giải chi tiết

a) Hai vị trí \(O\) và \(A\) là hai vị trí chân cầu, tại hai vị trí này ta có: \(y = 0\)

\( \Leftrightarrow 4,8 \cdot \sin \frac{x}{9} = 0 \Leftrightarrow \sin \frac{x}{9} = 0 \Leftrightarrow \frac{x}{9} = k\pi (k \in \mathbb{Z}) \Leftrightarrow x = 9k\pi (k \in \mathbb{Z})\)

Quan sát đồ thị ta thấy, đồ thị hàm số \({\rm{y}} = 4,8 \cdot \sin \frac{x}{9}\) cắt trục hoành tại điểm 0 và \({\rm{A}}\) liên tiếp nhau với \(x \ge 0\).

Xét \({\rm{k}} = 0\), ta có \({{\rm{x}}_1} = 0\);

Xét \({\rm{k}} = 1\), ta có \({{\rm{x}}_2} = 9\pi \).

Mà \({x_1} = 0\) nên đây là hoành độ của 0 , do đó \({x_2} = 9\pi \) là hoành độ của điểm \(A\).

Khi đó \(OA = 9\pi \approx 28,3\).

Vậy chiều rộng của con sông xấp xỉ 28,3 m.

b) Do sà lan có độ cao 3,6 m so với mực nước sông nên khi sà lan đi qua gầm cầu thì ứng với \({\rm{y}} = 3,6\).

\( \Leftrightarrow 4,8 \cdot \sin \frac{x}{9} = 3,6 \Leftrightarrow \sin \frac{x}{9} = \frac{3}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\frac{{\rm{x}}}{9} \approx 0,848 + {\rm{k}}2\pi }\\{\frac{{\rm{x}}}{9} \approx \pi - 0,848 + {\rm{k}}2\pi }\end{array}} \right.\)

(Dùng máy tính cầm tay (chuyển về chế độ “radian”) bấm liên tiếp \(SHIFT\)\sin 3 \div 4 = ta được kết quả gần đúng là 0,85) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{\rm{x}} \approx 7,632 + 18{\rm{k}}\pi }\\{{\rm{x}} \approx 9\pi - 7,632 + 18{\rm{k}}\pi }\end{array}({\rm{k}} \in \mathbb{Z})} \right.\)

Xét \({\rm{k}} = 0\), ta có \({{\rm{x}}_1} \approx 7,632;{{\rm{x}}_2} \approx 20,642\).

Ta biểu diễn các giá trị \(x\) vừa tìm được trên hệ trục tọa độ vẽ đồ thị hàm số \(y = \) 4,8. \(\sin \frac{x}{9}\) như sau:

Bài 14 trang 41 SGK Toán 11 tập 1 - Cánh diều 3

Khi đó để sà lan có thể đi qua được gầm cầu thì khối hàng hóa có độ cao 3,6 m phải có chiều rộng nhỏ hơn độ dài đoạn thẳng \({\rm{BC}}\) trên hình vẽ.

Mà \(BC \approx 20,642 - 7,632 = 13,01(m) < 13,1(m)\).

Vậy chiều rộng của khối hàng hoá đó phải nhỏ hơn 13,1 m.

c) Giả sử sà lan chở khối hàng được mô tả bởi hình chữ nhật MNPQ:

Bài 14 trang 41 SGK Toán 11 tập 1 - Cánh diều 4

Khi đó \(QP = 9;OA = 28,3\) và \(OQ = PA\).

Mà \(OQ + QP + PA = OA \Rightarrow OQ + 9 + OQ \approx 28,3 \Rightarrow OQ \approx 9,65\)

Khi đó \({y_M} = 4,8 \cdot \sin \frac{{{x_M}}}{9} = 4,8 \cdot \sin \frac{{OQ}}{9} \approx 4,8 \cdot \sin \frac{{9,65}}{9} \approx 4,22(\;{\rm{m}}) < 4,3\) (m).

Vậy để sà lan có thể đi qua được gầm cầu thì chiều cao của khối hàng hoá đó phải nhỏ hơn 4,3 m.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 14 trang 41 SGK Toán 11 tập 1 - Cánh diều – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng môn toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 14 trang 41 SGK Toán 11 tập 1 - Cánh diều: Giải chi tiết và hướng dẫn

Bài 14 trang 41 SGK Toán 11 tập 1 - Cánh diều thuộc chương trình học Toán 11, tập trung vào việc ôn tập chương 1: Vectơ trong mặt phẳng. Bài tập này yêu cầu học sinh vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ để giải quyết các bài toán cụ thể.

Nội dung bài tập Bài 14 trang 41 SGK Toán 11 tập 1 - Cánh diều

Bài 14 bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định tọa độ của vectơ.
  • Dạng 2: Thực hiện các phép toán vectơ (cộng, trừ, nhân với một số).
  • Dạng 3: Chứng minh các đẳng thức vectơ.
  • Dạng 4: Ứng dụng vectơ vào hình học phẳng (chứng minh tính chất của các hình, tìm tâm của đường tròn, v.v.).

Giải chi tiết Bài 14 trang 41 SGK Toán 11 tập 1 - Cánh diều

Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi:

Câu a)

Đề bài: Cho A(1; 2), B(3; 4). Tìm tọa độ của vectơ AB.

Lời giải:

Vectơ AB có tọa độ là (3 - 1; 4 - 2) = (2; 2).

Câu b)

Đề bài: Cho vectơ a = (1; -2), b = (3; 1). Tìm tọa độ của vectơ a + b.

Lời giải:

Vectơ a + b có tọa độ là (1 + 3; -2 + 1) = (4; -1).

Câu c)

Đề bài: Cho vectơ a = (2; 3), k = -2. Tìm tọa độ của vectơ ka.

Lời giải:

Vectơ ka có tọa độ là (-2 * 2; -2 * 3) = (-4; -6).

Các lưu ý khi giải Bài 14 trang 41 SGK Toán 11 tập 1 - Cánh diều

Để giải tốt bài tập này, các bạn cần:

  • Nắm vững định nghĩa và tính chất của vectơ.
  • Thành thạo các phép toán vectơ.
  • Hiểu rõ các ứng dụng của vectơ trong hình học phẳng.
  • Luyện tập thường xuyên để củng cố kiến thức.

Ví dụ minh họa thêm

Ví dụ 1: Cho A(0; 0), B(1; 1), C(2; 0). Chứng minh rằng A, B, C không thẳng hàng.

Lời giải:

Ta có vectơ AB = (1; 1) và vectơ AC = (2; 0). Vì tỉ số giữa các tọa độ của hai vectơ này không bằng nhau (1/2 ≠ 1/0), nên A, B, C không thẳng hàng.

Tổng kết

Bài 14 trang 41 SGK Toán 11 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và các ứng dụng của nó. Hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.

Giaitoan.edu.vn luôn đồng hành cùng bạn trên con đường chinh phục tri thức. Chúc các bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11