Logo Header
  1. Môn Toán
  2. Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cánh Diều

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cánh Diều

Lý thuyết Giới hạn của hàm số - Nền tảng Toán 11 Cánh Diều

Chào mừng bạn đến với bài học về Lý thuyết Giới hạn của hàm số, một trong những chủ đề quan trọng nhất trong chương trình Toán 11 Cánh Diều. Bài viết này sẽ cung cấp cho bạn kiến thức cơ bản, các định nghĩa, tính chất và ứng dụng của giới hạn hàm số một cách dễ hiểu nhất.

Giaitoan.edu.vn tự hào là nền tảng học toán online uy tín, mang đến cho bạn trải nghiệm học tập hiệu quả và thú vị. Hãy cùng chúng tôi khám phá thế giới Toán học!

I. Giới hạn hữu hạn của hàm số tại một điểm

I. Giới hạn hữu hạn của hàm số tại một điểm

1. Định nghĩa

Cho khoảng K chứa điểm \({x_0}\)và hàm số \(f(x)\) xác định trên K hoặc trên \(K\backslash \left\{ {{x_0}} \right\}\). Hàm số \(f(x)\)có giới hạn là số L khi \(x\) dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì, \({x_n} \in K\backslash \left\{ {{x_0}} \right\}\) và \({x_n} \to {x_0}\), ta có\(f({x_n}) \to L\)

Kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) hay \(f(x) \to L\), khi \({x_n} \to {x_0}\).

2. Phép toán trên giới hạn hữu hạn của hàm số

a, Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g(x) = M\)\(\left( {L,M \in \mathbb{R}} \right)\)thì

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x) \pm g(x)} \right] = L \pm M\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x).g(x)} \right] = L.M\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {\frac{{f(x)}}{{g(x)}}} \right] = \frac{L}{M}\left( {M \ne 0} \right)\)

b, Nếu \(f(x) \ge 0\) với mọi \(x \in \left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) thì \(L \ge 0\) và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f(x)} = \sqrt L \).

3. Giới hạn một phía

- Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a;{x_0}} \right)\). Số L được gọi là giới hạn bên trái của hàm số \(y = f(x)\) khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì thỏa mãn \(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\) ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = L\).

- Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {{x_0};b} \right)\). Số L là giới hạn bên của hàm số \(y = f(x)\) khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì thỏa mãn \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\) ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\).

*Nhận xét: \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = \mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\)

II. Giới hạn hữu hạn của hàm số tại vô cực

- Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta nói hàm số \(f(x)\) có giới hạn là số L khi \(x \to + \infty \) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì \({x_n} > a\) và \({x_n} \to + \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to + \infty \).

- Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( { - \infty ;b} \right)\). Ta nói hàm số \(f(x)\) có giới hạn là số L khi \(x \to - \infty \) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì \({x_n} < b\) và \({x_n} \to - \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to - \infty \).

* Nhận xét:

- Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.

- Với c là hằng số, k là một số nguyên dương ta có:

\(\mathop {\lim }\limits_{x \to + \infty } c = c\), \(\mathop {\lim }\limits_{x \to - \infty } c = c\),\(\mathop {\lim }\limits_{x \to + \infty } (\frac{c}{{{x^k}}}) = 0,\mathop {\lim }\limits_{x \to - \infty } (\frac{c}{{{x^k}}}) = 0\).

III. Giới hạn vô cực (một phía) của hàm số tại một điểm

- Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta nói hàm số \(f(x)\)có giới hạn \( + \infty \) khi \(x \to {a^ + }\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} > a\) và \({x_n} \to a\)ta có \(f({x_n}) \to + \infty \).

Kí hiệu \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = + \infty \)hay \(f(x) \to + \infty \) khi \(x \to {a^ + }\)

- Các giới hạn \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = - \infty ,\mathop {\lim }\limits_{x \to {a^ - }} f(x) = + \infty ,\mathop {\lim }\limits_{x \to {a^ - }} f(x) = - \infty \) được định nghĩa tương tự.

IV. Giới hạn vô cực của hàm số tại vô cực

- Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a;{x_0}} \right)\). Ta nói hàm số \(f(x)\)có giới hạn \( + \infty \) khi \(x \to {x_0}\) về bên trái nếu với dãy số \(\left( {{x_n}} \right)\)bất kì, \({x_n} > a\) và \({x_n} \to + \infty \) ta có \(f({x_n}) \to + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \).

Kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \) hay \(f(x) \to + \infty \) khi \(x \to + \infty \).

- Các giới hạn \(\mathop {\lim }\limits_{x \to + \infty } f(x) = - \infty ,\mathop {\lim }\limits_{x \to - \infty } f(x) = + \infty ,\mathop {\lim }\limits_{x \to - \infty } f(x) = - \infty \) được định nghĩa tương tự.

* Chú ý:

  • \(\mathop {\lim }\limits_{x \to + \infty } {x^k} = + \infty ,k \in {\mathbb{Z}^ + }.\)
  • \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = + \infty ,\) k là số nguyên dương chẵn.
  • \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = - \infty ,\) k là số nguyên dương lẻ.
  • Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cánh Diều 1
Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cánh Diều – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng toán học. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cánh Diều

Giới hạn của hàm số là một khái niệm nền tảng trong giải tích, đóng vai trò quan trọng trong việc nghiên cứu sự biến đổi của hàm số khi biến số tiến tới một giá trị nhất định. Trong chương trình Toán 11 Cánh Diều, học sinh sẽ được làm quen với khái niệm này thông qua các bài học về giới hạn hữu hạn, giới hạn vô cực và các ứng dụng của giới hạn trong việc giải quyết các bài toán thực tế.

1. Khái niệm Giới hạn của hàm số

Giới hạn của hàm số f(x) khi x tiến tới a, ký hiệu là limx→a f(x), là giá trị mà f(x) tiến tới khi x tiến gần a nhưng không bằng a. Nói cách khác, khi x càng gần a thì f(x) càng gần một giá trị L nào đó. Giá trị L được gọi là giới hạn của f(x) khi x tiến tới a.

2. Các loại Giới hạn

  • Giới hạn hữu hạn: Khi x tiến tới a, f(x) tiến tới một số thực L.
  • Giới hạn vô cực: Khi x tiến tới a, f(x) tiến tới vô cực (+∞) hoặc âm vô cực (-∞).
  • Giới hạn ở vô cực: Khi x tiến tới vô cực (+∞) hoặc âm vô cực (-∞), f(x) tiến tới một số thực L hoặc vô cực (+∞) hoặc âm vô cực (-∞).

3. Tính chất của Giới hạn

Việc nắm vững các tính chất của giới hạn giúp chúng ta đơn giản hóa việc tính toán giới hạn của hàm số. Một số tính chất quan trọng bao gồm:

  • limx→a [f(x) + g(x)] = limx→a f(x) + limx→a g(x)
  • limx→a [f(x) - g(x)] = limx→a f(x) - limx→a g(x)
  • limx→a [f(x) * g(x)] = limx→a f(x) * limx→a g(x)
  • limx→a [f(x) / g(x)] = (limx→a f(x)) / (limx→a g(x)) (với limx→a g(x) ≠ 0)

4. Các dạng Giới hạn thường gặp

Trong quá trình học tập và giải bài tập, chúng ta thường gặp các dạng giới hạn sau:

  • Giới hạn của đa thức: Thay trực tiếp giá trị của x vào đa thức.
  • Giới hạn của phân thức hữu tỷ: Có thể rút gọn phân thức trước khi thay giá trị của x.
  • Giới hạn vô định: Sử dụng các phương pháp như nhân liên hợp, chia đa thức, hoặc áp dụng quy tắc L'Hopital.

5. Ứng dụng của Giới hạn

Giới hạn có nhiều ứng dụng quan trọng trong toán học và các lĩnh vực khác, bao gồm:

  • Tính đạo hàm của hàm số.
  • Tính tích phân của hàm số.
  • Nghiên cứu sự liên tục của hàm số.
  • Giải quyết các bài toán về tốc độ và gia tốc.

6. Bài tập ví dụ minh họa

Ví dụ 1: Tính limx→2 (x2 + 3x - 1)

Giải: Thay x = 2 vào biểu thức, ta được: 22 + 3*2 - 1 = 4 + 6 - 1 = 9. Vậy limx→2 (x2 + 3x - 1) = 9.

Ví dụ 2: Tính limx→1 (x2 - 1) / (x - 1)

Giải: Rút gọn biểu thức, ta được: (x2 - 1) / (x - 1) = (x - 1)(x + 1) / (x - 1) = x + 1. Thay x = 1 vào biểu thức, ta được: 1 + 1 = 2. Vậy limx→1 (x2 - 1) / (x - 1) = 2.

7. Lời khuyên khi học Lý thuyết Giới hạn

  1. Nắm vững định nghĩa và các tính chất của giới hạn.
  2. Luyện tập nhiều bài tập để làm quen với các dạng giới hạn khác nhau.
  3. Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm toán học để kiểm tra kết quả.
  4. Tìm hiểu các ứng dụng của giới hạn trong các lĩnh vực khác nhau.

Hy vọng bài viết này đã cung cấp cho bạn những kiến thức cơ bản và hữu ích về Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cánh Diều. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11