Logo Header
  1. Môn Toán
  2. Bài 7 trang 21 SGK Toán 11 tập 1 - Cánh diều

Bài 7 trang 21 SGK Toán 11 tập 1 - Cánh diều

Bài 7 trang 21 SGK Toán 11 tập 1 - Cánh Diều

Bài 7 trang 21 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 tập 1, Cánh Diều. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn của hàm số để giải quyết các bài toán cụ thể.

giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập Toán 11 hiệu quả.

Cho \(\cos 2x = \frac{1}{4}\). Tính: \(A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right)\);

Đề bài

Cho \(\cos 2x = \frac{1}{4}\).

Tính: \(A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right)\); \(B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right)\)

Phương pháp giải - Xem chi tiếtBài 7 trang 21 SGK Toán 11 tập 1 - Cánh diều 1

Dựa vào công thức biến tích thành tổng để tính

Lời giải chi tiết

\(\begin{array}{l}A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right) = \frac{1}{2}\left[ {\cos \left( {x + \frac{\pi }{6} + x - \frac{\pi }{6}} \right) + \cos \left( {x + \frac{\pi }{6} - x + \frac{\pi }{6}} \right)} \right]\\A = \frac{1}{2}\left[ {\cos 2x + \cos \frac{\pi }{3}} \right] = \frac{1}{2}\left( {\frac{1}{4} + \frac{1}{2}} \right) = \frac{3}{8}\end{array}\)

\(\begin{array}{l}B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right) = - \frac{1}{2}\left[ {\cos \left( {x + \frac{\pi }{3} + x - \frac{\pi }{3}} \right) - \cos \left( {x + \frac{\pi }{3} - x + \frac{\pi }{3}} \right)} \right]\\B = - \frac{1}{2}\left( {\cos 2x - \cos \frac{{2\pi }}{3}} \right) = - \frac{1}{2}\left( {\frac{1}{4} + \frac{1}{2}} \right) = - \frac{3}{8}\end{array}\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 7 trang 21 SGK Toán 11 tập 1 - Cánh diều – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng toán học. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 7 trang 21 SGK Toán 11 tập 1 - Cánh Diều: Giải chi tiết và hướng dẫn

Bài 7 trang 21 SGK Toán 11 tập 1 - Cánh Diều là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc hiểu và vận dụng khái niệm giới hạn của hàm số. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững định nghĩa giới hạn, các tính chất của giới hạn và các phương pháp tính giới hạn thường gặp.

Nội dung bài tập Bài 7 trang 21 SGK Toán 11 tập 1 - Cánh Diều

Bài tập yêu cầu tính các giới hạn sau:

  1. lim (x→2) (x^2 - 3x + 2) / (x - 2)
  2. lim (x→-1) (x^3 + 1) / (x + 1)
  3. lim (x→0) (√(x+1) - 1) / x
  4. lim (x→∞) (2x + 1) / (x - 3)

Giải chi tiết Bài 7 trang 21 SGK Toán 11 tập 1 - Cánh Diều

Giải câu a: lim (x→2) (x^2 - 3x + 2) / (x - 2)

Ta có thể phân tích tử thức thành nhân tử:

x^2 - 3x + 2 = (x - 1)(x - 2)

Do đó:

lim (x→2) (x^2 - 3x + 2) / (x - 2) = lim (x→2) (x - 1)(x - 2) / (x - 2) = lim (x→2) (x - 1) = 2 - 1 = 1

Giải câu b: lim (x→-1) (x^3 + 1) / (x + 1)

Ta có thể phân tích tử thức thành nhân tử:

x^3 + 1 = (x + 1)(x^2 - x + 1)

Do đó:

lim (x→-1) (x^3 + 1) / (x + 1) = lim (x→-1) (x + 1)(x^2 - x + 1) / (x + 1) = lim (x→-1) (x^2 - x + 1) = (-1)^2 - (-1) + 1 = 1 + 1 + 1 = 3

Giải câu c: lim (x→0) (√(x+1) - 1) / x

Để tính giới hạn này, ta có thể nhân cả tử và mẫu với liên hợp của tử thức:

lim (x→0) (√(x+1) - 1) / x = lim (x→0) [(√(x+1) - 1)(√(x+1) + 1)] / [x(√(x+1) + 1)] = lim (x→0) (x + 1 - 1) / [x(√(x+1) + 1)] = lim (x→0) x / [x(√(x+1) + 1)] = lim (x→0) 1 / (√(x+1) + 1) = 1 / (√(0+1) + 1) = 1 / (1 + 1) = 1/2

Giải câu d: lim (x→∞) (2x + 1) / (x - 3)

Để tính giới hạn này, ta có thể chia cả tử và mẫu cho x:

lim (x→∞) (2x + 1) / (x - 3) = lim (x→∞) (2 + 1/x) / (1 - 3/x) = (2 + 0) / (1 - 0) = 2

Kết luận

Vậy, kết quả của Bài 7 trang 21 SGK Toán 11 tập 1 - Cánh Diều là:

  • a) 1
  • b) 3
  • c) 1/2
  • d) 2

Lưu ý khi giải bài tập về giới hạn

  • Luôn kiểm tra xem có thể phân tích tử thức hoặc mẫu thức thành nhân tử hay không.
  • Sử dụng liên hợp để khử dạng vô định.
  • Chia cả tử và mẫu cho x khi tính giới hạn tại vô cùng.
  • Nắm vững các định nghĩa và tính chất của giới hạn.

Hy vọng với lời giải chi tiết này, các em học sinh có thể hiểu rõ hơn về cách giải Bài 7 trang 21 SGK Toán 11 tập 1 - Cánh Diều và áp dụng vào các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 11