Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 11 tập 2 của giaitoan.edu.vn. Ở bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 2, trang 108, 109, 110, 111 sách giáo khoa Toán 11 tập 2 - Cánh Diều.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong học tập.
Để tạo mô hình một tháp chuông ở Hình 83a từ một tấm bìa hình vuông, bạn Dũng cắt bỏ phần màu trắng gồm bốn tam giác cân bằng nhau có đáy là các cạnh của tấm bìa (Hình 83b)
Để tạo mô hình một tháp chuông ở Hình 83a từ một tấm bìa hình vuông, bạn Dũng cắt bỏ phần màu trắng gồm bốn tam giác cân bằng nhau có đáy là các cạnh của tấm bìa (Hình 83b) rồi gấp lại phần màu xanh để tạo thành một hình chóp tứ giác. Quan sát Hình 83a, 83b và cho biết:
a) Đáy của hình chóp mà bạn Dũng tạo ra là tứ giác có tính chất gì;
b) Các cạnh bên của hình chóp đó có bằng nhau hay không.
Phương pháp giải:
Quan sát hình ảnh và trả lời câu hỏi.
Lời giải chi tiết:
a) Đáy của hình chóp mà bạn Dũng tạo ra là hình vuông.
b) Các cạnh bên của hình chóp đó bằng nhau.
Cho hình chóp tam giác đều \(S.ABC\). Chứng minh rằng các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau.
Phương pháp giải:
Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.
Lời giải chi tiết:
Gọi \(O\) là trọng tâm tam giác \(ABC\).
\(\begin{array}{l} \Rightarrow SO \bot \left( {ABC} \right)\\ \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = \left( {SA,OA} \right) = \widehat {SAO},\\\left( {SB,\left( {ABC} \right)} \right) = \left( {SB,OB} \right) = \widehat {SBO},\\\left( {SC,\left( {ABC} \right)} \right) = \left( {SC,OC} \right) = \widehat {SCO}\end{array}\)
Tam giác \(ABC\) đều \( \Rightarrow OA = OB = OC\).
\(\begin{array}{l}SA = SB = SC \Rightarrow \frac{{OA}}{{SA}} = \frac{{OB}}{{SB}} = \frac{{OC}}{{SC}} \Rightarrow \cos \widehat {SAO} = \cos \widehat {SBO} = {\mathop{\rm co}\nolimits} \widehat {sSCO}\\ \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = \left( {SB,\left( {ABC} \right)} \right) = \left( {SC,\left( {ABC} \right)} \right)\end{array}\)
Khối bê tông ở Hình 87a gợi nên hình ảnh một hình chóp bị cắt đi bởi mặt phẳng \(\left( R \right)\) song song với đáy. Hình 87b là hình biểu diễn của khối bê tông ở Hình 87a. Hãy dự đoán về mối quan hệ giữa các đường thẳng chứa các cạnh \({A_1}{B_1},{A_2}{B_2},{A_3}{B_3},{A_4}{B_4}\).
Phương pháp giải:
Quan sát hình ảnh và trả lời câu hỏi.
Lời giải chi tiết:
Các đường thẳng chứa các cạnh \({A_1}{B_1},{A_2}{B_2},{A_3}{B_3},{A_4}{B_4}\) đồng quy tại một điểm.
Cho hình chóp đều \(S.ABC\). Gọi \(A',B',C'\) lần lượt là trung điểm của các đoạn thẳng \(SA,SB,SC\). Chứng minh rằng phần hình chóp đã cho giới hạn bởi hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'B'C'} \right)\) là hình chóp cụt đều.
Phương pháp giải:
Ta cần chứng minh hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'B'C'} \right)\) song song với nhau.
Lời giải chi tiết:
\(A'\) là trung điểm của \(SA\)
\(B'\) là trung điểm của \(SB\)
\( \Rightarrow A'B'\) là đường trung bình của \(\Delta SAB\)
\(\left. \begin{array}{l} \Rightarrow A'B'\parallel AB\\AB \subset \left( {ABC} \right)\end{array} \right\} \Rightarrow A'B'\parallel \left( {ABC} \right)\)
\(A'\) là trung điểm của \(SA\)
\(C'\) là trung điểm của \(SC\)
\( \Rightarrow A'C'\) là đường trung bình của \(\Delta SAC\)
\(\left. \begin{array}{l} \Rightarrow A'C'\parallel AC\\AC \subset \left( {ABC} \right)\end{array} \right\} \Rightarrow A'C'\parallel \left( {ABC} \right)\)
\(\left. \begin{array}{l}A'B'\parallel \left( {ABC} \right)\\A'C'\parallel \left( {ABC} \right)\\A'B',A'C' \subset \left( {A'B'C'} \right)\end{array} \right\} \Rightarrow \left( {A'B'C'} \right)\parallel \left( {ABC} \right)\)
Vậy phần hình chóp đã cho giới hạn bởi hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'B'C'} \right)\) là hình chóp cụt đều.
Mục 2 của chương trình Toán 11 tập 2 - Cánh Diều tập trung vào các kiến thức về phép biến hình. Cụ thể, các em sẽ được làm quen với các phép biến hình cơ bản như phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm. Việc nắm vững các phép biến hình này là nền tảng quan trọng để học tập các kiến thức hình học nâng cao hơn trong chương trình học.
Trang 108 SGK Toán 11 tập 2 - Cánh Diều chứa các bài tập vận dụng kiến thức về phép tịnh tiến. Các bài tập này yêu cầu học sinh xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép tịnh tiến. Để giải các bài tập này, các em cần nắm vững công thức tọa độ của ảnh qua phép tịnh tiến: x' = x + a, y' = y + b, trong đó (a, b) là vectơ tịnh tiến.
Trang 109 SGK Toán 11 tập 2 - Cánh Diều tập trung vào các bài tập về phép quay. Các bài tập này yêu cầu học sinh xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép quay. Để giải các bài tập này, các em cần nắm vững công thức tọa độ của ảnh qua phép quay quanh gốc tọa độ: x' = xcosα - ysinα, y' = xsinα + ycosα, trong đó α là góc quay.
Trang 110 SGK Toán 11 tập 2 - Cánh Diều chứa các bài tập về phép đối xứng trục. Các bài tập này yêu cầu học sinh xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép đối xứng trục. Để giải các bài tập này, các em cần nắm vững quy tắc đối xứng trục: Điểm đối xứng của một điểm M(x, y) qua trục Ox là M'(x, -y), điểm đối xứng của một điểm M(x, y) qua trục Oy là M'(-x, y).
Trang 111 SGK Toán 11 tập 2 - Cánh Diều tập trung vào các bài tập về phép đối xứng tâm. Các bài tập này yêu cầu học sinh xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép đối xứng tâm. Để giải các bài tập này, các em cần nắm vững quy tắc đối xứng tâm: Điểm đối xứng của một điểm M(x, y) qua điểm I(a, b) là M'(2a - x, 2b - y).
Hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, các em sẽ tự tin hơn trong việc giải các bài tập về phép biến hình. Chúc các em học tập tốt!
Phép biến hình | Công thức tọa độ |
---|---|
Tịnh tiến | x' = x + a, y' = y + b |
Quay quanh gốc tọa độ | x' = xcosα - ysinα, y' = xsinα + ycosα |
Đối xứng trục Ox | M'(x, -y) |
Đối xứng trục Oy | M'(-x, y) |
Đối xứng tâm I(a, b) | M'(2a - x, 2b - y) |