Chào mừng bạn đến với bài giải Bài 2 trang 113 SGK Toán 11 tập 1 - Cánh Diều trên giaitoan.edu.vn. Bài viết này cung cấp lời giải chi tiết, từng bước, giúp bạn hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ bạn học toán hiệu quả và đạt kết quả tốt nhất.
Cho hình hộp ABCD.A’B’C’D‘. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh BC, AA‘, C’D‘, AD‘. Chứng minh rằng:
Đề bài
Cho hình hộp ABCD.A’B’C’D‘. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh BC, AA‘, C’D‘, AD‘. Chứng minh rằng:
a) NQ // A’D‘ và \(NQ = \frac{1}{2}A'D'\)
b) Tứ giác MNQC là hình bình hành
c) MN // (ACD‘)
d) (MNP) // (ACD‘)
Phương pháp giải - Xem chi tiết
- Hình tứ giác có các cặp cạnh song song là hình bình hành
- Nếu đường thẳng a không nằm trong mặt phẳng (P) và a song song với đường thẳng a’ nằm trong (P) thì a song song với (P)
- Nếu mặt phẳng (P) chứa hai đường thằng cắt nhau a, b và a, b cùng song song với mặt phẳng (Q) thì (P) song song với (Q)
Lời giải chi tiết
a) Ta có: N là trung điểm của AA’ nên \(\frac{{AN}}{{AA'}} = \frac{1}{2}\)
Q là trung điểm của AD’ nên \(\frac{{AQ}}{{AD'}} = \frac{1}{2}\)
Theo định lý Ta – let, ta có NQ // A’D’
Suy ra \(\frac{{NQ}}{{A'D'}} = \frac{{AN}}{{AA'}} = \frac{1}{2}\) nên\(NQ = \frac{1}{2}A'D'\)
b) Ta có: NQ // A’D’ mà A’D’ // BC nên NQ // BC hay NQ // MC (1)
Ta có \(NQ = \frac{1}{2}A'D'\) mà A’D’ = BC, \(MC = \frac{1}{2}BC\), nên NQ = MC (2)
Từ (1) và (2) suy ra MNQC là hình bình hành
c) Ta có: MNQC là hình bình hành nên MN // CQ
Mà CQ thuộc (ACD’)
Nên MN // (ACD’)
d) Gọi O là trung điểm của AC
Tam giác ACB có: O, M là trung điểm của AC, BC
Suy ra: OM // AB nên \(OM = \frac{1}{2}AB\)
Mà AB = C’D’, \(D'P = \frac{1}{2}C'D\),
Suy ra OM = D’P (1)
Ta có: OM // AB, AB // C’D’ nên OM // C’D‘ hay OM // D’P (2)
Từ (1) và (2) suy ra OMPD’ là hình bình hành. Do đó: MP // OD’
Mà OD’ thuộc (ACD’)
Suy ra: MP // (ACD’)
Mà MN thuộc (ACD’)
Do đó: (MNP) // (ACD’)
Bài 2 trang 113 SGK Toán 11 tập 1 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài toán này yêu cầu học sinh phải nắm vững các khái niệm về đạo hàm của hàm số, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị của hàm số.
Bài 2 thường xoay quanh việc tìm đạo hàm của một hàm số cho trước, hoặc tìm điều kiện để hàm số có cực trị. Đôi khi, bài toán còn yêu cầu học sinh phải phân tích hàm số, xác định khoảng đồng biến, nghịch biến và vẽ đồ thị hàm số.
Để giải quyết bài toán này, bạn cần thực hiện các bước sau:
Giả sử bài toán yêu cầu tìm cực trị của hàm số y = x3 - 3x2 + 2.
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong SGK Toán 11 tập 1 - Cánh Diều hoặc các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Đạo hàm có rất nhiều ứng dụng trong thực tế, chẳng hạn như:
Bài 2 trang 113 SGK Toán 11 tập 1 - Cánh Diều là một bài toán quan trọng giúp bạn hiểu rõ hơn về ứng dụng của đạo hàm trong việc tìm cực trị của hàm số. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, bạn đã nắm vững phương pháp giải và có thể áp dụng vào các bài tập tương tự.
Chúc bạn học tập tốt!