Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 3 trang 55, 56 SGK Toán 11 tập 1 - Cánh Diều tại giaitoan.edu.vn. Chúng tôi cung cấp đáp án chính xác, dễ hiểu, cùng với phương pháp giải bài tập một cách khoa học và hiệu quả.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, tự tin giải quyết các bài toán Toán 11 và đạt kết quả cao trong học tập.
Cho cấp số nhân (left( {{u_n}} right)) có số hạng đầu ({u_1}), công bội (q ne 1) Đặt ({S_n} = {u_1} + {u_2} + {u_3} + ... + {u_n} = {u_1} + {u_1}q + {u_1}{q^2} + ... + {u_1}{q^{n - 1}})
Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\), công bội \(q \ne 1\)
Đặt \({S_n} = {u_1} + {u_2} + {u_3} + ... + {u_n} = {u_1} + {u_1}q + {u_1}{q^2} + ... + {u_1}{q^{n - 1}}\)
a) Tính \({S_n}.q\) và \({S_n} - {S_n}.q\)
b) Từ đó, hãy tìm công thức tính \({S_n}\) theo \({u_1}\) và q
Phương pháp giải:
Dựa vào công thức tính cấp số cộng để tính
Lời giải chi tiết:
a) Ta có:
\({S_n}.q = \left( {{u_1} + {u_1}q + {u_1}{q^2} + ... + {u_1}{q^{n - 1}}} \right).q = {u_1}\left( {1 + q + {q^2} + ... + {q^{n - 1}}} \right).q = {u_1}\left( {q + {q^2} + {q^3} + ... + {q^n}} \right)\)
\(\begin{array}{l}{S_n} - {S_n}.q = {u_1} + {u_1}q + {u_1}{q^2} + ... + {u_1}{q^{n - 1}} - {u_1}\left( {q + {q^2} + {q^3} + ... + {q^n}} \right)\\ = {u_1}\left( {1 + q + {q^2} + ... + {q^{n - 1}}} \right) - {u_1}\left( {q + {q^2} + {q^3} + ... + {q^n}} \right)\\ = {u_1}\left( {1 + q + {q^2} + ... + {q^{n - 1}} - \left( {q + {q^2} + {q^3} + ... + {q^n}} \right)} \right)\\ = {u_1}\left( {1 - {q^n}} \right)\end{array}\)
b) Ta có: \({S_n} - {S_n}.q = {u_1}\left( {1 - {q^n}} \right) \Leftrightarrow {S_n}\left( {1 - q} \right) = {u_1}\left( {1 - {q^n}} \right) \Leftrightarrow {S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{\left( {1 - q} \right)}}\)
Tính tổng n số hạng đầu của mỗi cấp số nhân sau:
a) 3; – 6; 12; – 24; ... với n = 12.
b) \(\frac{1}{10},\frac{1}{100},\frac{1}{1000},...\) với n = 5.
Phương pháp giải:
Dựa vào công thức tính tổng n số hạng đầu của một cấp số nhân
Lời giải chi tiết:
a) Ta có: 3; – 6; 12; – 24; ... là cấp số nhân với \(u_1 = 3\) và công bội q = – 2.
Khi đó tổng của 12 số hạng đầu của cấp số nhân đã cho là:
\(S_{12}=\frac{3(1−(−2)^{12})}{1−(−2)} = -4095 \).
b) Ta có: \(\frac{1}{10},\frac{1}{100},\frac{1}{1000},...\) là một cấp số nhân với \(u_1 = \frac{1}{10} \) và công bội \(q=\frac{1}{10}\).
Khi đó tổng của 5 số hạng đầu của cấp số nhân đã cho là:
\(S_5=\frac{\frac{1}{10}(1-(\frac{1}{10})^5)}{1−\frac{1}{10}}= 0,1111\).
Mục 3 trong SGK Toán 11 tập 1 - Cánh Diều thường tập trung vào một chủ đề cụ thể trong chương trình học. Để giải quyết các bài tập trong mục này một cách hiệu quả, học sinh cần nắm vững lý thuyết cơ bản, các định nghĩa, định lý và công thức liên quan. Bài viết này sẽ cung cấp lời giải chi tiết cho từng bài tập trong mục 3 trang 55, 56, đồng thời phân tích phương pháp giải và các lưu ý quan trọng.
Bài tập 1 thường là bài tập áp dụng trực tiếp kiến thức lý thuyết. Để giải bài tập này, học sinh cần:
(Lời giải chi tiết bài tập 1 sẽ được trình bày tại đây, bao gồm các bước giải, giải thích và kết luận.)
Bài tập 2 có thể là bài tập nâng cao hơn, đòi hỏi học sinh phải vận dụng kiến thức một cách linh hoạt và sáng tạo. Để giải bài tập này, học sinh cần:
(Lời giải chi tiết bài tập 2 sẽ được trình bày tại đây, bao gồm các bước giải, giải thích và kết luận.)
Bài tập 3 có thể là bài tập liên hệ thực tế, giúp học sinh hiểu rõ hơn về ứng dụng của kiến thức Toán học trong cuộc sống. Để giải bài tập này, học sinh cần:
(Lời giải chi tiết bài tập 3 sẽ được trình bày tại đây, bao gồm các bước giải, giải thích và kết luận.)
Bài tập 4 có thể là bài tập tổng hợp, yêu cầu học sinh phải vận dụng kiến thức từ nhiều chủ đề khác nhau. Để giải bài tập này, học sinh cần:
(Lời giải chi tiết bài tập 4 sẽ được trình bày tại đây, bao gồm các bước giải, giải thích và kết luận.)
Hy vọng rằng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, các em học sinh sẽ tự tin hơn khi giải quyết các bài tập trong mục 3 trang 55, 56 SGK Toán 11 tập 1 - Cánh Diều. Chúc các em học tập tốt và đạt kết quả cao!