Logo Header
  1. Môn Toán
  2. Bài 4 trang 75 SGK Toán 11 tập 2 - Cánh Diều

Bài 4 trang 75 SGK Toán 11 tập 2 - Cánh Diều

Bài 4 trang 75 SGK Toán 11 tập 2 - Cánh Diều: Giải pháp chi tiết và dễ hiểu

Chào mừng bạn đến với bài giải Bài 4 trang 75 SGK Toán 11 tập 2 - Cánh Diều trên giaitoan.edu.vn. Bài viết này cung cấp lời giải chi tiết, chính xác, giúp bạn hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.

Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ bạn học Toán 11 một cách hiệu quả nhất.

Một chất điểm chuyển động theo phương trình \(s(t) = {t^3} - 3{t^2} + 8t + 1\), trong đó t > 0

Đề bài

Một chất điểm chuyển động theo phương trình \(s(t) = {t^3} - 3{t^2} + 8t + 1\), trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tìm vận tốc tức thời, gia tốc tức thời của chất diểm;

a) Tại thời điểm t = 3(s)

b) Tại thời điểm mà chất điểm di chuyển được 7 (m)

Phương pháp giải - Xem chi tiếtBài 4 trang 75 SGK Toán 11 tập 2 - Cánh Diều 1

Dựa vào hàm số đạo hàm để tìm từng đại lượng sau đó thay số

Lời giải chi tiết

Vận tốc tức thời tại thời điểm t: \(v(t) = s'(t) = 3{t^2} - 6t + 8\)

Gia tốc tức thời tại thời điểm t: \(a(t) = v'(t) = 6t - 6\)

a) Tại thời điểm t = 3(s)

- Vận tốc tức thời là: \(v(3) = {3.3^2} - 6.3 + 8 = 17\,\,(m/s)\)

- Gia tốc tức thời là: \(a(3) = 6.3 - 6 = 12\)\(\left( {m/{s^2}} \right)\)

b) Tại thời điểm chất điểm di chuyển được 7 (m) ta có:

\(\begin{array}{l}{t^3} - 3{t^2} + 8t + 1 = 7\\ \Leftrightarrow {t^3} - 3{t^2} + 8t - 6 = 0\\ \Leftrightarrow {t^3} - 3{t^2} + 8t - 6 = 0\\ \Leftrightarrow t = 1\end{array}\)

Với t = 1

- Vận tốc tức thời là: \(v(1) = {3.1^2} - 6.1 + 8 = 5\,\,(m/s)\)

- Gia tốc tức thời là: \(a(1) = 6.1 - 6 = 0\left( {m/{s^2}} \right)\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 4 trang 75 SGK Toán 11 tập 2 - Cánh Diều – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 4 trang 75 SGK Toán 11 tập 2 - Cánh Diều: Phân tích và Giải chi tiết

Bài 4 trang 75 SGK Toán 11 tập 2 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh nắm vững các khái niệm về đạo hàm của hàm số, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập

Bài 4 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số.
  • Tìm cực trị của hàm số.
  • Xác định khoảng đơn điệu của hàm số.
  • Giải các bài toán liên quan đến ứng dụng của đạo hàm trong thực tế.

Lời giải chi tiết

Để giải Bài 4 trang 75 SGK Toán 11 tập 2 - Cánh Diều, chúng ta cần thực hiện các bước sau:

  1. Bước 1: Xác định hàm số cần xét.
  2. Bước 2: Tính đạo hàm của hàm số.
  3. Bước 3: Tìm các điểm cực trị của hàm số bằng cách giải phương trình đạo hàm bằng 0.
  4. Bước 4: Xác định khoảng đơn điệu của hàm số dựa vào dấu của đạo hàm.
  5. Bước 5: Giải các bài toán ứng dụng (nếu có).

Ví dụ minh họa

Giả sử hàm số cần xét là f(x) = x3 - 3x2 + 2.

Bước 1: Tính đạo hàm f'(x) = 3x2 - 6x.

Bước 2: Giải phương trình f'(x) = 0 để tìm các điểm cực trị: 3x2 - 6x = 0 => x = 0 hoặc x = 2.

Bước 3: Xác định khoảng đơn điệu của hàm số:

  • Khi x < 0, f'(x) > 0 => Hàm số đồng biến trên khoảng (-∞, 0).
  • Khi 0 < x < 2, f'(x) < 0 => Hàm số nghịch biến trên khoảng (0, 2).
  • Khi x > 2, f'(x) > 0 => Hàm số đồng biến trên khoảng (2, +∞).

Lưu ý quan trọng

Khi giải Bài 4 trang 75 SGK Toán 11 tập 2 - Cánh Diều, bạn cần chú ý:

  • Nắm vững các quy tắc tính đạo hàm.
  • Kiểm tra kỹ các điều kiện của bài toán.
  • Sử dụng các công cụ hỗ trợ tính toán (nếu cần thiết).
  • Thực hành giải nhiều bài tập tương tự để nâng cao kỹ năng.

Ứng dụng của bài tập

Việc giải Bài 4 trang 75 SGK Toán 11 tập 2 - Cánh Diều không chỉ giúp bạn nắm vững kiến thức về đạo hàm mà còn có ứng dụng thực tế trong nhiều lĩnh vực, như:

  • Kinh tế: Tính toán chi phí, lợi nhuận, sản lượng.
  • Vật lý: Tính toán vận tốc, gia tốc, lực.
  • Kỹ thuật: Thiết kế các hệ thống, tối ưu hóa các quy trình.

Tài liệu tham khảo

Để học tập và ôn luyện Toán 11 hiệu quả, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 tập 2 - Cánh Diều.
  • Sách bài tập Toán 11 tập 2 - Cánh Diều.
  • Các trang web học Toán online uy tín như giaitoan.edu.vn.

Kết luận

Bài 4 trang 75 SGK Toán 11 tập 2 - Cánh Diều là một bài tập quan trọng, giúp bạn củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và những lưu ý quan trọng trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả.

Tài liệu, đề thi và đáp án Toán 11