Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 11 tập 1 của giaitoan.edu.vn. Ở bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 4, trang 27, 28, 29 sách giáo khoa Toán 11 tập 1 - Cánh Diều.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong học tập.
Xét tập hợp (D = mathbb{R}backslash left{ {frac{pi }{2} + kpi |,k in mathbb{Z}} right}). Với mỗi số thực (x in D), hãy nêu định nghĩa (tan x)
Xét tập hợp \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |\,k \in \mathbb{Z}} \right\}\). Với mỗi số thực \(x \in D\), hãy nêu định nghĩa \(\tan x\)
Phương pháp giải:
Sử đụng định nghĩa về \(\tan x\)
Lời giải chi tiết:
\(\tan x = \frac{{\sin x}}{{\cos x}}\)
a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:
x | \( - \frac{\pi }{3}\) | \( - \frac{\pi }{4}\) | 0 | \(\frac{\pi }{4}\) | \(\frac{\pi }{3}\) |
\(y = \tan x\) | ? | ? | ? | ? | ? |
b) Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; tanx) với \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) và nối lại ta được đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) (Hình 29).
c) Làm tương tự như trên đối với các khoảng \(\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right),\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\),...ta có đồ thị hàm số \(y = \tan x\)trên D được biểu diễn ở Hình 30.
Phương pháp giải:
Sử dụng công thức tính tan.
Lời giải chi tiết:
a)
x | \( - \frac{\pi }{3}\) | \( - \frac{\pi }{4}\) | 0 | \(\frac{\pi }{4}\) | \(\frac{\pi }{3}\) |
\(y = \tan x\) | \( - \sqrt 3 \) | -1 | 0 | 1 | \(\sqrt 3 \) |
b) Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; tanx) với \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) và nối lại ta được đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) (Hình 29).
c) Làm tương tự như trên đối với các khoảng \(\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right),\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\),...ta có đồ thị hàm số \(y = \tan x\)trên D được biểu diễn ở Hình 30.
Quan sát đồ thị hàm số \(y = \tan x\) ở Hình 30
a) Nêu tập giá trị của hàm số \(y = \tan x\)
b) Gốc tọa độ có là tâm đối xứng của đồ thị hàm số hay không? Từ đó kết luận tính chẵn, lẻ của hàm số \(y = \tan x\)
c) Bằng cách dịch chuyển đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) song song với trục hoành sang phải theo đoạn có độ dài π, ta nhận được đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right)\) hay không? Hàm số \(y = \tan x\) có tuần hoàn hay không?
d) Tìm khoảng đồng biến, nghịch biến của hàm số \(y = \tan x\)
Phương pháp giải:
Sử dụng định nghĩa về hàm số \(y = \tan x\)
Lời giải chi tiết:
a) Tập giá trị của hàm số \(y = \tan x\) là R
b) Gốc tọa độ là tâm đối xứng của đồ thị hàm số
Như vậy, hàm số \(y = \tan x\)là hàm số lẻ
c) Bằng cách dịch chuyển đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) song song với trục hoành sang phải theo đoạn có độ dài π, ta nhận được đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right)\)
Như vậy, hàm số \(y = \tan x\) có tuần hoàn
d) Hàm số \(y = \tan x\)đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right)\) với \(k \in Z\)
Với mỗi số thực m, tìm số giao điểm của đường thẳng y=m với đồ thị hàm số \(y = \tan x\)trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\)
Phương pháp giải:
Sử dụng đồ thị của hàm số \(y = \tan x\)
Lời giải chi tiết:
Theo đồ thì của hàm số \(y = \tan x\), số giao điểm của đường thẳng y=m với đồ thị hàm số \(y = \tan x\)trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) là 1
Mục 4 của chương trình Toán 11 tập 1 - Cánh Diều tập trung vào các kiến thức về hàm số bậc hai. Các em sẽ được làm quen với định nghĩa, tính chất, đồ thị và ứng dụng của hàm số bậc hai trong thực tế. Việc nắm vững kiến thức này là nền tảng quan trọng cho các chương trình học toán ở các lớp trên.
Chúng ta sẽ cùng nhau đi sâu vào giải chi tiết từng bài tập trong mục 4, trang 27, 28, 29 SGK Toán 11 tập 1 - Cánh Diều. Mỗi bài tập sẽ được phân tích kỹ lưỡng, đưa ra phương pháp giải phù hợp và lời giải chi tiết, dễ hiểu.
Bài tập này yêu cầu các em xác định hệ số a, b, c của hàm số bậc hai được cho. Để làm được bài này, các em cần nắm vững dạng tổng quát của hàm số bậc hai: y = ax2 + bx + c (a ≠ 0).
Ví dụ: Cho hàm số y = 2x2 - 5x + 1. Hệ số a = 2, b = -5, c = 1.
Tập xác định của hàm số là tập hợp tất cả các giá trị của x mà tại đó hàm số có nghĩa. Đối với hàm số bậc hai, tập xác định là tập R (tập hợp tất cả các số thực).
Để vẽ đồ thị của hàm số bậc hai, các em cần thực hiện các bước sau:
Bài tập này yêu cầu các em tìm nghiệm của phương trình bậc hai ax2 + bx + c = 0. Các em có thể sử dụng công thức nghiệm hoặc phương pháp phân tích thành nhân tử để giải phương trình.
Nếu a > 0, hàm số đạt giá trị nhỏ nhất tại đỉnh của parabol. Nếu a < 0, hàm số đạt giá trị lớn nhất tại đỉnh của parabol.
Hàm số bậc hai có rất nhiều ứng dụng trong thực tế, ví dụ như:
Để giải bài tập về hàm số bậc hai một cách hiệu quả, các em cần:
Hy vọng rằng với lời giải chi tiết và dễ hiểu này, các em sẽ nắm vững kiến thức về hàm số bậc hai và tự tin giải các bài tập trong SGK Toán 11 tập 1 - Cánh Diều. Chúc các em học tập tốt!
Bài tập | Nội dung |
---|---|
Bài 1 | Xác định hệ số a, b, c |
Bài 2 | Tìm tập xác định |
Bài 3 | Vẽ đồ thị |