Bài 3 trang 33 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Cánh Diều, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này đòi hỏi học sinh phải nắm vững các công thức đạo hàm cơ bản và kỹ năng giải toán.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 3 trang 33 SGK Toán 11 tập 2, giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Rút gọn mỗi biểu thức sau:
Đề bài
Rút gọn mỗi biểu thức sau:
a) \(\frac{{{a^{\frac{7}{3}}} - {a^{\frac{1}{3}}}}}{{{a^{\frac{4}{3}}} - {a^{\frac{1}{3}}}}} \,\,\,(a > 0;a \ne 1)\).
b) \(\sqrt [3] {\sqrt {{a^{12}b^{6}}}}\,\,\,(a > 0;b > 0)\).
Phương pháp giải - Xem chi tiết
Áp dụng tính chất lũy thừa.
Lời giải chi tiết
a) $\frac{{{a}^{\frac{7}{3}}}-{{a}^{\frac{1}{3}}}}{{{a}^{\frac{4}{3}}}-{{a}^{\frac{1}{3}}}}=\frac{{{a}^{\frac{1}{3}}}\left( {{a}^{2}}-1 \right)}{{{a}^{\frac{1}{3}}}\left( a-1 \right)}=\frac{\left( a-1 \right)\left( a+1 \right)}{\left( a-1 \right)}=a+1$.
b) \(\sqrt[3]{\sqrt{{{a}^{12}}{{b}^{6}}}}=\sqrt[3]{{{a}^{\frac{12}{2}}}.{{b}^{\frac{6}{2}}}}=\sqrt[3]{{{a}^{6}}.{{b}^{3}}}={{a}^{\frac{6}{3}}}{{b}^{\frac{3}{3}}}={{a}^{2}}b\).
Bài 3 trang 33 SGK Toán 11 tập 2 - Cánh Diều yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán liên quan đến tốc độ thay đổi của đại lượng. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức đạo hàm cơ bản, cũng như kỹ năng phân tích và giải quyết vấn đề.
Bài 3 trang 33 SGK Toán 11 tập 2 thường bao gồm các dạng bài tập sau:
Để giúp học sinh hiểu rõ hơn về cách giải Bài 3 trang 33 SGK Toán 11 tập 2, chúng tôi xin trình bày lời giải chi tiết như sau:
Ví dụ 1: Tính đạo hàm của hàm số f(x) = x2 + 2x - 1 tại x = 1.
Lời giải:
f'(x) = 2x + 2
f'(1) = 2(1) + 2 = 4
Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.
Ví dụ 2: Tìm đạo hàm của hàm số g(x) = sin(x) * cos(x).
Lời giải:
g'(x) = (sin(x))' * cos(x) + sin(x) * (cos(x))'
g'(x) = cos(x) * cos(x) + sin(x) * (-sin(x))
g'(x) = cos2(x) - sin2(x)
Vậy, đạo hàm của hàm số g(x) là cos2(x) - sin2(x).
Để nắm vững kiến thức về đạo hàm, học sinh nên:
Ngoài ra, học sinh có thể tham khảo thêm các tài liệu học tập khác như sách giáo khoa, sách bài tập, và các trang web học toán trực tuyến.
Khi giải Bài 3 trang 33 SGK Toán 11 tập 2, học sinh cần lưu ý:
Hy vọng với lời giải chi tiết và những kiến thức bổ ích trên, học sinh sẽ tự tin giải quyết Bài 3 trang 33 SGK Toán 11 tập 2 - Cánh Diều một cách hiệu quả. Chúc các em học tốt!