Logo Header
  1. Môn Toán
  2. Bài 1 trang 94 SGK Toán 11 tập 2 - Cánh diều

Bài 1 trang 94 SGK Toán 11 tập 2 - Cánh diều

Bài 1 trang 94 SGK Toán 11 tập 2 - Cánh diều: Giải pháp chi tiết và dễ hiểu

Chào mừng bạn đến với bài giải Bài 1 trang 94 SGK Toán 11 tập 2 - Cánh diều tại giaitoan.edu.vn. Bài viết này cung cấp lời giải chi tiết, từng bước, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tự tin chinh phục môn Toán.

\(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\), đáy \(ABCD\) là hình thoi cạnh \(a\) và \(AC = a\).

Đề bài

\(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\), đáy \(ABCD\) là hình thoi cạnh \(a\) và \(AC = a\).

a) Tính số đo của góc nhị diện \(\left[ {B,SA,C} \right]\).

b) Tính số đo của góc nhị diện \(\left[ {B,SA,D} \right]\).

c) Biết \(SA = a\), tính số đo của góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {ABCD} \right)\).

Phương pháp giải - Xem chi tiếtBài 1 trang 94 SGK Toán 11 tập 2 - Cánh diều 1

‒ Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)

Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).

Bước 2: Tìm mặt phẳng \(\left( R \right) \supset c\).

Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).

Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).

‒ Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.

Lời giải chi tiết

Bài 1 trang 94 SGK Toán 11 tập 2 - Cánh diều 2

a) \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB,SA \bot A{\rm{C}}\)

Vậy \(\widehat {BA{\rm{C}}}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {B,SA,C} \right]\)

\(AB = BC = AC = a \Rightarrow \Delta ABC\) đều \( \Rightarrow \widehat {BA{\rm{C}}} = \widehat {ABC} = {60^ \circ }\)

Vậy số đo của góc nhị diện \(\left[ {B,SA,C} \right]\) bằng \({60^ \circ }\).

b) \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB,SA \bot A{\rm{D}}\)

Vậy \(\widehat {BA{\rm{D}}}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {B,SA,D} \right]\)

\(ABCD\) là hình thoi \( \Rightarrow \widehat {BA{\rm{D}}} = {180^ \circ } - \widehat {ABC} = {180^ \circ } - {60^ \circ } = {120^ \circ }\)

Vậy số đo của góc nhị diện \(\left[ {B,SA,D} \right]\) bằng \({120^ \circ }\).

c) \(SA \bot \left( {ABCD} \right) \Rightarrow \left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\)

\(\Delta SAC\) vuông tại \(A \Rightarrow \tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{a}{a} = 1 \Rightarrow \widehat {SCA} = {45^ \circ }\)

Vậy \(\left( {SC,\left( {ABCD} \right)} \right) = {45^ \circ }\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 1 trang 94 SGK Toán 11 tập 2 - Cánh diều – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 1 trang 94 SGK Toán 11 tập 2 - Cánh diều: Phân tích và Giải chi tiết

Bài 1 trang 94 SGK Toán 11 tập 2 - Cánh diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị của hàm số.

Nội dung bài tập

Bài 1 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số.
  • Tìm đạo hàm cấp hai của hàm số.
  • Xác định các điểm cực trị của hàm số.
  • Khảo sát hàm số bằng đạo hàm.

Giải chi tiết Bài 1 trang 94 SGK Toán 11 tập 2 - Cánh diều

Để giải quyết bài tập này một cách hiệu quả, chúng ta cần thực hiện các bước sau:

  1. Bước 1: Xác định hàm số. Đọc kỹ đề bài để xác định chính xác hàm số cần khảo sát.
  2. Bước 2: Tính đạo hàm cấp nhất. Sử dụng các quy tắc tính đạo hàm để tìm đạo hàm cấp nhất của hàm số.
  3. Bước 3: Tìm điểm dừng. Giải phương trình đạo hàm cấp nhất bằng 0 để tìm các điểm dừng của hàm số.
  4. Bước 4: Xét dấu đạo hàm cấp nhất. Xác định dấu của đạo hàm cấp nhất trên các khoảng xác định để xác định khoảng đồng biến, nghịch biến của hàm số.
  5. Bước 5: Tính đạo hàm cấp hai. Sử dụng các quy tắc tính đạo hàm để tìm đạo hàm cấp hai của hàm số.
  6. Bước 6: Xác định điểm uốn. Giải phương trình đạo hàm cấp hai bằng 0 để tìm các điểm uốn của hàm số.
  7. Bước 7: Khảo sát hàm số. Dựa vào các kết quả đã tính được, vẽ đồ thị hàm số và kết luận về tính chất của hàm số.

Ví dụ minh họa

Giả sử hàm số cần khảo sát là: y = x3 - 3x2 + 2

Bước 1: Tính đạo hàm cấp nhất

y' = 3x2 - 6x

Bước 2: Tìm điểm dừng

3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2

Bước 3: Xét dấu đạo hàm cấp nhất

Trên khoảng (-∞; 0), y' > 0, hàm số đồng biến.

Trên khoảng (0; 2), y' < 0, hàm số nghịch biến.

Trên khoảng (2; +∞), y' > 0, hàm số đồng biến.

Bước 4: Tính đạo hàm cấp hai

y'' = 6x - 6

Bước 5: Xác định điểm uốn

6x - 6 = 0 ⇔ x = 1

Bước 6: Khảo sát hàm số

Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2.

Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Hàm số có điểm uốn tại x = 1.

Lưu ý khi giải bài tập

  • Đọc kỹ đề bài và xác định chính xác yêu cầu của bài tập.
  • Sử dụng đúng các quy tắc tính đạo hàm.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính vận tốc và gia tốc của vật chuyển động.
  • Tìm điểm cực trị của hàm số để tối ưu hóa lợi nhuận hoặc chi phí.
  • Nghiên cứu sự thay đổi của các hiện tượng vật lý, hóa học, kinh tế.

Hy vọng bài giải chi tiết này sẽ giúp bạn hiểu rõ hơn về Bài 1 trang 94 SGK Toán 11 tập 2 - Cánh diều. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11