Bài 1.17 trang 17, 18 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và các phép toán vectơ. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.17 trang 17, 18 sách bài tập Toán 11 Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
Đề bài
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
a) \(y = 2 + \,3\,|\cos x\,|\);
b) \(y = 2\sqrt {\sin x} + 1\);
c)\(y = 3{\cos ^2}x + 4\cos 2x\);
d) \(y = \sin x + \cos x\).
Phương pháp giải - Xem chi tiết
Áp dụng lý thuyết \( - 1 \le \sin x \le 1\), \( - 1 \le \cos x \le 1\), \(0 \le \left| {\cos x} \right| \le 1\), \(0 \le \left| {\sin x} \right| \le 1\), \(0 \le \sqrt {\sin x} \le 1\), \(0 \le \sqrt {\cos x} \le 1\).
Lời giải chi tiết
a) Vì \(0 \le \,|\cos x\,|\, \le \,1\) nên \(0 \le \,3\,|\cos x\,|\, \le \,3\), do đó\(2 \le \,2 + 3\,|\cos x\,|\, \le \,5\,\forall \in \mathbb{R}\).
Vậy giá trị lớn nhất của hàm số là 5, đạt được khi
\(|\cos x\,|\, = 1 \Leftrightarrow \sin x = 0 \Leftrightarrow x = k\pi ,\,\,(k \in \mathbb{Z})\)
Và giá trị nhỏ nhất của hàm số là 2, đạt được khi
\(\cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi ,\,\,(k \in \mathbb{Z})\).
b) Điều kiện \(\sin x \ge 0\). Vì \(0 \le \sin x \le 1\) hay \(0 \le \sqrt {\sin x} \le 1\) nên \(0 \le 2\sqrt {\sin x} \le 2\), do đó \(1 \le 1 + 2\sqrt {\sin x} \le 3\) với mọi x thỏa mãn \(0 \le \sin x \le 1\).
Vậy giá trị lớn nhất của hàm số là 3, đạt được khi \(\sin x = 1\) hay
\(x = \frac{\pi }{2} + k\pi \,\,(k \in \mathbb{Z})\).
Giá trị nhỏ nhất của hàm số là 1, đạt được khi \(\sin x = 0\) hay \(x = k\pi \,\,(k \in \mathbb{Z})\).
c) Ta có \(y = {\cos ^2}x + 4\cos 2x = 3.\frac{{1 + \cos 2x}}{2} + 4\cos 2x = \frac{3}{2} + \frac{{11}}{2}\cos 2x.\)
Vì \( - 1 \le \cos 2x \le 1\) nên \( - \frac{{11}}{2} \le \frac{{11}}{2}\cos 2x \le \frac{{11}}{2}\),
Do đó \( - 4 = \frac{3}{2} - \frac{{11}}{2} \le \frac{3}{2} + \frac{{11}}{2}\cos 2x \le \frac{3}{2} + \frac{{11}}{2} = 7\) với mọi \(x \in \mathbb{R}\)
Vậy giá trị lớn nhất của hàm số là 7, đạt được khi
\(\cos 2x = 1 \Leftrightarrow 2x = k2\pi \Leftrightarrow x = k\pi \,\,(k \in \mathbb{Z})\)
Và giá trị nhỏ nhất của hàm số là -4 đạt được khi
\(\cos 2x = - 1 \Leftrightarrow 2x = \pi + k2\pi \Leftrightarrow x = \frac{\pi }{2} + k\pi \,\,(k \in \mathbb{Z})\).
d) Ta có \(y = \sin x + \cos x = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right).\)
Vì \( - 1 \le \sin \left( {x + \frac{\pi }{4}} \right) \le 1\) nên \( - \sqrt 2 \le \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) \le \sqrt 2 \) với mọi \(x \in \mathbb{R}\).
Vậy giá trị lớn nhất của hàm số là \(\sqrt 2 \), đạt được khi
\(\sin \left( {x + \frac{\pi }{4}} \right) = 1 \Rightarrow x + \frac{\pi }{4} = \frac{\pi }{2} + k2\pi \Rightarrow x = \frac{\pi }{4} + k2\pi .\)
Và giá trị nhỏ nhất của hàm số là \( - \sqrt 2 \), đạt được khi
\(\sin \left( {x + \frac{\pi }{4}} \right) = - 1 \Rightarrow x + \frac{\pi }{4} = - \frac{\pi }{2} + k2\pi \Rightarrow x = - \frac{{3\pi }}{4} + k2\pi .\)
Bài 1.17 sách bài tập Toán 11 Kết nối tri thức tập trung vào việc vận dụng các kiến thức về vectơ, đặc biệt là các phép toán cộng, trừ, nhân với một số thực và tích vô hướng của hai vectơ. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững định nghĩa, tính chất và các công thức liên quan đến vectơ.
Trước khi đi vào giải bài tập, chúng ta cùng ôn lại một số kiến thức lý thuyết quan trọng:
Bài 1.17 thường bao gồm các dạng bài tập sau:
Giả sử bài 1.17 yêu cầu:
Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: 2AM = AB + AC
Lời giải:
Ta có: AM = (AB + AC) / 2 (do M là trung điểm của BC)
Suy ra: 2AM = AB + AC (đpcm)
Để củng cố kiến thức, bạn có thể luyện tập thêm các bài tập tương tự trong sách bài tập Toán 11 Kết nối tri thức hoặc các nguồn tài liệu học tập khác. Việc luyện tập thường xuyên sẽ giúp bạn nắm vững kiến thức và tự tin giải các bài tập vectơ.
Giaitoan.edu.vn hy vọng với hướng dẫn chi tiết này, các bạn học sinh sẽ hiểu rõ hơn về cách giải bài 1.17 trang 17, 18 sách bài tập Toán 11 Kết nối tri thức và đạt kết quả tốt trong môn học Toán.
Bài tập | Đáp án |
---|---|
Bài 1.18 | (Đáp án sẽ được cung cấp sau) |
Bài 1.19 | (Đáp án sẽ được cung cấp sau) |