Bài 9.17 trang 62 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 9.17 trang 62, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Tính đạo hàm cấp hai của các hàm số sau:
Đề bài
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = \frac{{{x^4}}}{4} - 2{x^2} + 1\);
b) \(y = \frac{{2x + 1}}{{x - 1}}\).
Phương pháp giải - Xem chi tiết
Áp dụng quy tắc tính đạo hàm \({\left( {\frac{u}{v}} \right)^\prime } = \frac{{u'v - uv'}}{{{v^2}}}\,\,\left( {v = v\left( x \right) \ne 0} \right)\)
Lời giải chi tiết
a)\(\begin{array}{*{20}{l}}{\;\;y' = {x^3} - 4x \Rightarrow y'' = 3{x^2} - 4;}&\;\end{array}\)
\({\rm{b)\;}}y' = {\left( {\frac{{2x + 1}}{{x - 1}}} \right)^\prime } = - \frac{3}{{{{(x - 1)}^2}}} \Rightarrow y'' = {\left[ { - \frac{3}{{{{(x - 1)}^2}}}} \right]^\prime } = \frac{{3.2.(x - 1)}}{{{{(x - 1)}^4}}} = \frac{6}{{{{(x - 1)}^3}}}\)
Bài 9.17 sách bài tập Toán 11 - Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ trong không gian. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi đi vào giải bài toán cụ thể, chúng ta cần phân tích đề bài để xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Thông thường, bài toán sẽ cung cấp các thông tin về các điểm, vectơ, hoặc các mối quan hệ giữa chúng. Dựa vào đó, chúng ta sẽ xác định được mục tiêu cần đạt được, ví dụ như tính độ dài vectơ, tìm góc giữa hai vectơ, hoặc chứng minh một đẳng thức vectơ.
(Nội dung lời giải chi tiết bài 9.17 sẽ được trình bày tại đây, bao gồm các bước giải, các công thức sử dụng, và các giải thích rõ ràng. Ví dụ:)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SB và mặt phẳng (ABCD).
Ngoài bài 9.17, sách bài tập Toán 11 - Kết nối tri thức còn có nhiều bài tập tương tự liên quan đến vectơ trong không gian. Các bài tập này thường yêu cầu học sinh vận dụng các kiến thức và kỹ năng đã học để giải quyết các bài toán thực tế. Một số dạng bài tập thường gặp bao gồm:
Để học tốt môn Toán 11, đặc biệt là các bài tập về vectơ, bạn nên:
Bài 9.17 trang 62 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và hướng dẫn cụ thể trên đây, các em học sinh sẽ tự tin hơn khi giải bài tập và đạt kết quả tốt trong môn Toán 11.