Bài 6.54 trang 22 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.54 trang 22, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Giải các phương trình
Đề bài
Giải các phương trình sau:
a) \({32^{\frac{{x + 5}}{{x - 7}}}} = 0,25 \cdot {128^{\frac{{x + 17}}{{x - 3}}}}\)
b) \({\rm{lo}}{{\rm{g}}_2}x + {\rm{lo}}{{\rm{g}}_2}\left( {x - 1} \right) = 1\).
Phương pháp giải - Xem chi tiết
Áp dụng tính chất của lũy thừa, quy tắc tính lôgarit để đưa về cùng cơ số
Biến đổi, quy về cùng cơ số
\({a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow a = 1\) hoặc \(\left\{ \begin{array}{l}0 < a \ne 1\\f\left( x \right) = g\left( x \right)\end{array} \right.\).
\({\log _a}f\left( x \right) = {\log _a}g\left( x \right) \Leftrightarrow f\left( x \right) = g\left( x \right) > 0\)
Lời giải chi tiết
a) Điều kiện: \(x \ne 3,x \ne 7\). Khi đó, ta có:
\({32^{\frac{{x + 5}}{{x - 7}}}} = 0,25 \cdot {128^{\frac{{x + 17}}{{x - 3}}}} \Leftrightarrow {2^{{5^{\frac{{x + 5}}{{x - 7}}}}}} = {2^{ - 2}} \cdot {2^{7\frac{{x + 17}}{{x - 3}}}} \Leftrightarrow {2^{\frac{{5\left( {x + 5} \right)}}{{x - 7}}}} = {2^{ - 2 + \frac{{7\left( {x + 17} \right)}}{{x - 3}}}}\)
\( \Leftrightarrow \frac{{5\left( {x + 5} \right)}}{{x - 7}} = - 2 + \frac{{7\left( {x + 17} \right)}}{{x - 3}}\)
\(\; \Leftrightarrow 5\left( {x + 5} \right)\left( {x - 3} \right) = - 2\left( {x - 7} \right)\left( {x - 3} \right) + 7\left( {x + 17} \right)\left( {x - 7} \right) \Leftrightarrow x = 10\)
Kết hợp với điều kiện, ta được nghiệm của phương trình đã cho là \(x = 10\).
b) Điều kiện: \(x > 1\). Khi đó, ta có:
\({\rm{lo}}{{\rm{g}}_2}x + {\rm{lo}}{{\rm{g}}_2}\left( {x - 1} \right) = 1 \Leftrightarrow {\rm{lo}}{{\rm{g}}_2}x\left( {x - 1} \right) = 1 \Leftrightarrow x\left( {x - 1} \right) = 2 \Leftrightarrow {x^2} - x - 2 = 0\).
Giải phương trình trên ta được hai nghiệm \({x_1} = - 1,{x_2} = 2\).
Chỉ có nghiệm \(x = 2\) thoả mãn điều kiện.
Vậy nghiệm của phương trình đã cho là \(x = 2\).
Bài 6.54 trang 22 sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản như:
Dưới đây là lời giải chi tiết bài 6.54 trang 22:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).
Bước 1: Xác định các yếu tố cần thiết
Để tính góc giữa đường thẳng SC và mặt phẳng (ABCD), ta cần tìm hình chiếu của SC lên mặt phẳng (ABCD). Gọi H là hình chiếu của S lên mặt phẳng (ABCD). Vì SA vuông góc với (ABCD) nên H trùng với A.
Bước 2: Tính độ dài các cạnh
Ta có: AC = a√2 (đường chéo hình vuông)
Trong tam giác vuông SAC, ta có: SC = √(SA2 + AC2) = √(a2 + (a√2)2) = √(a2 + 2a2) = a√3
Bước 3: Tính góc giữa SC và mặt phẳng (ABCD)
Góc giữa đường thẳng SC và mặt phẳng (ABCD) chính là góc SCA. Ta có:
tan(SCA) = SA/AC = a/(a√2) = 1/√2
Suy ra: SCA = arctan(1/√2) ≈ 35.26°
Kết luận: Góc giữa đường thẳng SC và mặt phẳng (ABCD) là khoảng 35.26°.
Khi giải các bài toán về góc giữa đường thẳng và mặt phẳng, cần chú ý:
Để củng cố kiến thức, bạn có thể tham khảo các bài tập tương tự sau:
Bài 6.54 trang 22 sách bài tập Toán 11 - Kết nối tri thức là một bài tập điển hình về ứng dụng kiến thức về đường thẳng và mặt phẳng trong không gian. Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!