Bài 2.5 trang 34 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và các phép toán vectơ. Bài tập này thường yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài 2.5 trang 34, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho dãy số (left( {{u_n}} right)) xác định bởi hệ thức truy hồi: ({u_1} = 1,{u_{n + 1}} = {u_n} + left( {n + 1} right))
Đề bài
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi hệ thức truy hồi: \({u_1} = 1,{u_{n + 1}} = {u_n} + \left( {n + 1} \right)\)
a) Mỗi số hạng của dãy số này gọi là một số tam giác. Viết bảy số tam giác đầu.
b) Biết rằng \(1 + 2 + ... + n = \frac{{n\left( {n + 1} \right)}}{2}\). Hãy chứng tỏ công thức của số hạng tổng quát là: \({u_{n + 1}} = \frac{{\left( {n + 1} \right)\left( {n + 2} \right)}}{2}\).
c) Chứng minh rằng \({u_{n + 1}} + {u_n} = {\left( {n + 1} \right)^2}\), tức là tổng của hai số tam giác liên tiếp là một số chính phương.
Phương pháp giải - Xem chi tiết
Ta kí hiệu \(u = u\left( n \right)\) bởi \(\left( {{u_n}} \right)\), do đó dãy số \(\left( {{u_n}} \right)\) được viết dưới dạng khai triển \({u_1},{u_2},...,{u_n},...\) Số \({u_1}\) gọi là số hạng đầu, số \({u_n}\) là số hạng thứ n và gọi là số hạng tổng quát của dãy số
Lời giải chi tiết
a) Bảy số tam giác đầu là:
\({u_1} = 1,\;{u_2} = 1 + \left( {1 + 1} \right) = 3,\;{u_3} = 3 + \left( {2 + 1} \right) = 6,\;{u_4} = 6 + \left( {3 + 1} \right) = 10,\;{u_5} = 10 + \left( {4 + 1} \right) = 15,\)
\({u_6} = 15 + \left( {5 + 1} \right) = 21,{u_7} = 21 + \left( {1 + 6} \right) = 28\)
b) Ta nhận thấy: \({u_2} = 1 + 2,{u_3} = 1 + 2 + 3,{u_4} = 1 + 2 + 3 + 4,..\)
Do đó, ta dự đoán: \({u_{n + 1}} = 1 + 2 + ... + \left( {n + 1} \right) = \frac{{\left( {n + 1} \right)\left( {n + 2} \right)}}{2}\)
c) Theo công thức phần b ta có:
\({u_{n + 1}} + {u_n} = \frac{{\left( {n + 1} \right)\left( {n + 2} \right)}}{2} + \frac{{n\left( {n + 1} \right)}}{2} = \frac{{\left( {n + 1} \right)\left( {n + 2 + n} \right)}}{2} = {\left( {n + 1} \right)^2}\)
Vậy tổng của hai số tam giác liên tiếp là một số chính phương.
Bài 2.5 trang 34 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập thuộc chương trình học vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt đầu giải bài tập, học sinh cần đọc kỹ đề bài, xác định rõ yêu cầu của bài toán và các dữ kiện đã cho. Sau đó, học sinh cần phân tích đề bài để tìm ra hướng giải quyết phù hợp. Thông thường, bài tập về vectơ sẽ yêu cầu học sinh:
Để giúp học sinh hiểu rõ hơn về cách giải bài 2.5 trang 34, chúng tôi xin trình bày lời giải chi tiết như sau:
(Ở đây sẽ là lời giải chi tiết của bài 2.5 trang 34, bao gồm các bước giải, công thức sử dụng và giải thích rõ ràng. Lời giải này sẽ được trình bày chi tiết và đầy đủ để học sinh có thể hiểu và tự giải các bài tập tương tự.)
Để giúp học sinh củng cố kiến thức và rèn luyện kỹ năng giải bài tập về vectơ, chúng tôi xin đưa ra một số ví dụ minh họa và bài tập tương tự:
Khi giải bài tập về vectơ, học sinh cần lưu ý một số điều sau:
Bài 2.5 trang 34 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ. Hy vọng rằng với lời giải chi tiết và các ví dụ minh họa trên, các em học sinh sẽ nắm vững kiến thức và tự tin giải các bài tập tương tự. Chúc các em học tập tốt!
Công thức vectơ quan trọng | Mô tả |
---|---|
\vec{a} + \vec{b} = (x_a + x_b; y_a + y_b) | Phép cộng vectơ |
\vec{a} - \vec{b} = (x_a - x_b; y_a - y_b) | Phép trừ vectơ |
\vec{a} \cdot \vec{b} = x_a x_b + y_a y_b | Tích vô hướng của hai vectơ |