Bài 8.13 trang 51 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 8.13 trang 51, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Có 3 hộp I, II, III. Mỗi hộp chứa ba tấm thẻ đánh số 1, 2, 3. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ.
Đề bài
3 hộp I, II, III. Mỗi hộp chứa ba tấm thẻ đánh số 1, 2, 3. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ. Xét các biến cố sau:
\(A\): "Tổng các số ghi trên ba tấm thẻ là 6"; \(B\): "Ba tấm thẻ có ghi số bằng nhau".
a) Tính \(P\left( A \right),P\left( B \right)\).
b) Hỏi \(A,B\) có độc lập không?
Phương pháp giải - Xem chi tiết
Tính \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\),\(P\left( B \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}},P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega \right)}}.\)
\(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\) suy ra hai biến cố \(A\) và \(B\) độc lập với nhau
\(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\) suy ra hai biến cố \(A\) và \(B\) không độc lập với nhau
Lời giải chi tiết
a) Ta có \({\rm{\Omega }} = \left\{ {\left( {a,b,c} \right):1 \le a,b,c \le 3} \right\},n\left( {\rm{\Omega }} \right) = 27\).
Tính \(P\left( A \right):A = \left\{ {\left( {1,2,3} \right);\left( {2,1,3} \right);\left( {3,1,2} \right);\left( {1,3,2} \right);\left( {3,2,1} \right);\left( {2,3,1} \right);\left( {2,2,2} \right)} \right\},n\left( A \right) = 7\).
Suy ra \(P\left( A \right) = \frac{7}{{27}}\).
Tính \(P\left( B \right):B = \left\{ {\left( {1,1,1} \right);\left( {2,2,2} \right);\left( {3,3,3} \right)} \right\},n\left( B \right) = 3\). Suy ra \(P\left( B \right) = \frac{3}{{27}}\).
b) Tính \(P\left( {AB} \right)\) : Ta có \(A \cap B = \left\{ {\left( {2,2,2} \right)} \right\}\). Vậy \(P\left( {AB} \right) = \frac{1}{{27}}\).
Vì \(P\left( {AB} \right) = \frac{1}{{27}} = \frac{{27}}{{{{27}^2}}} \ne \frac{{21}}{{{{27}^2}}} = \frac{7}{{27}} \cdot \frac{3}{{27}} = P\left( A \right) \cdot P\left( B \right)\) nên \(A\) và \(B\) không độc lập.
Bài 8.13 trang 51 sách bài tập Toán 11 - Kết nối tri thức thuộc chương 3: Đường thẳng và mặt phẳng trong không gian. Bài toán này thường yêu cầu học sinh xác định mối quan hệ giữa đường thẳng và mặt phẳng, sử dụng các định lý và tính chất đã học để chứng minh hoặc tính toán.
Trước khi bắt đầu giải bài, chúng ta cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Đồng thời, cần nhớ lại các kiến thức liên quan như:
(Nội dung lời giải chi tiết bài 8.13 trang 51 sẽ được trình bày tại đây. Bao gồm các bước giải, hình vẽ minh họa (nếu có) và giải thích rõ ràng từng bước. Ví dụ:)
Ví dụ: Giả sử đề bài yêu cầu chứng minh đường thẳng d song song với mặt phẳng (P). Ta sẽ thực hiện các bước sau:
Sau khi thực hiện các bước trên, ta có thể kết luận đường thẳng d song song với mặt phẳng (P).
Ngoài bài 8.13, còn rất nhiều bài tập tương tự trong sách bài tập Toán 11 - Kết nối tri thức. Để giải quyết các bài tập này, chúng ta có thể áp dụng các phương pháp sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tự giải các bài tập sau:
Bài 8.13 trang 51 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp các em học sinh hiểu rõ hơn về mối quan hệ giữa đường thẳng và mặt phẳng trong không gian. Hy vọng với lời giải chi tiết và các phương pháp giải đã trình bày, các em sẽ tự tin hơn khi giải các bài tập tương tự.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!
Tiêu chí | Mô tả |
---|---|
Kiến thức cần thiết | Đường thẳng và mặt phẳng trong không gian, các tính chất, dấu hiệu nhận biết. |
Phương pháp giải | Hình học, đại số, suy luận logic. |
Lưu ý | Đọc kỹ đề bài, xác định rõ các yếu tố, vẽ hình minh họa. |
Nguồn: Giaitoan.edu.vn |