Bài 4.30 trang 67 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.30 trang 67, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho tứ diện ABCD và một điểm O nằm trong tam giác BCD. Gọi (P) là mặt phẳng qua O và song song với mặt phẳng (ABD).
Đề bài
Cho tứ diện ABCD và một điểm O nằm trong tam giác BCD. Gọi (P) là mặt phẳng qua O và song song với mặt phẳng (ABD).
a) Xác định giao tuyến của mặt phẳng (P) và mặt phẳng (BCD).
b) Xác định giao tuyến của mặt phẳng (P) và các mặt còn lại của tứ diện.
Phương pháp giải - Xem chi tiết
Cho đường thẳng a song song với mặt phẳng (P). Nếu mặt phẳng (Q) chứa a và cắt (P) theo giao tuyến b thì a song song với b.
Lời giải chi tiết
a) Qua O kẻ đường thẳng song song với BD cắt BC tại E, cắt CD tại F. Khi đó, EF là giao tuyến của mặt phẳng (P) và mặt phẳng (BCD).
b) Trong mặt phẳng (ABC), vẽ EG//AB (G thuộc AC) thì EG là giao tuyến của mặt phẳng (P) với mặt phẳng ABC.
Ta có: G thuộc AC nằm trong mặt phẳng ACD, F thuộc DC nằm trong mặt phẳng ACD. Khi đó, GF là giao tuyến của mặt phẳng (P) và mặt phẳng (ACD).
Bài 4.30 trang 67 sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản như:
Dưới đây là lời giải chi tiết bài 4.30 trang 67 sách bài tập Toán 11 - Kết nối tri thức:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).
Bước 1: Xác định các yếu tố cần thiết
Để tính góc giữa đường thẳng SC và mặt phẳng (ABCD), ta cần tìm hình chiếu của SC lên mặt phẳng (ABCD). Gọi H là hình chiếu của S lên mặt phẳng (ABCD). Vì SA vuông góc với (ABCD) nên H trùng với A.
Bước 2: Tính độ dài các cạnh
Ta có: AC = a√2 (đường chéo hình vuông)
Trong tam giác vuông SAC, ta có: SC = √(SA² + AC²) = √(a² + (a√2)²) = √(a² + 2a²) = a√3
Bước 3: Tính góc giữa SC và mặt phẳng (ABCD)
Góc giữa đường thẳng SC và mặt phẳng (ABCD) chính là góc SCA. Ta có:
tan(SCA) = SA/AC = a/(a√2) = 1/√2
Suy ra: SCA = arctan(1/√2) ≈ 35.26°
Kết luận: Góc giữa đường thẳng SC và mặt phẳng (ABCD) là khoảng 35.26°.
Ngoài bài 4.30, còn rất nhiều bài tập tương tự liên quan đến góc giữa đường thẳng và mặt phẳng. Để giải các bài tập này, học sinh cần:
Một số dạng bài tập thường gặp:
Để củng cố kiến thức và kỹ năng giải bài tập, các em học sinh nên luyện tập thêm các bài tập khác trong sách bài tập Toán 11 - Kết nối tri thức. Ngoài ra, có thể tham khảo các tài liệu ôn tập và các bài giảng trực tuyến trên giaitoan.edu.vn.
Bài 4.30 trang 67 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ về góc giữa đường thẳng và mặt phẳng. Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ tự tin hơn khi giải các bài tập tương tự.