Bài 5.9 trang 78 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập này một cách hiệu quả.
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_1} = 2,{u_{n + 1}} = {u_n} + \frac{2}{{{3^n}}},n \ge 1\). Đặt \({v_n} = {u_{n + 1}} - {u_n}.\)
Đề bài
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_1} = 2,{u_{n + 1}} = {u_n} + \frac{2}{{{3^n}}},n \ge 1\). Đặt \({v_n} = {u_{n + 1}} - {u_n}.\)
a) Tính \({v_1} + {v_2} + ... + {v_n}\) theo n.
b) Tính \({u_n}\) theo n.
c) Tìm \(\mathop {\lim }\limits_{n \to + \infty } {u_n}\)
Phương pháp giải - Xem chi tiết
Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử thức và mẫu thức cho số lớn nhất, rồi áp dụng các quy tắc tính giới hạn.
Lời giải chi tiết
Ta có: \({v_n} = \frac{2}{{{3^n}}}.\) Do đó, \({v_1} + {v_2} + ... + {v_n} = 2\left( {\frac{{1 - \frac{1}{{{3^{n + 1}}}}}}{{1 - \frac{1}{3}}}} \right) = 3.\left( {1 - \frac{1}{{{3^{n + 1}}}}} \right)\)
Mặt khác:
\({v_1} + {v_2} + ... + {v_n} = \left( {{u_2} - {u_1}} \right) + \left( {{u_3} - {u_2}} \right) + ... + \left( {{u_{n + 1}} - {u_n}} \right) = {u_{n + 1}} - {u_1} = {u_{n + 1}} - 2\)
Vậy \({u_n} = 3\left( {1 - \frac{1}{{{3^n}}}} \right) + 2\)
c) \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \mathop {\lim }\limits_{n \to + \infty } \left[ {3\left( {1 - \frac{1}{{{3^n}}}} \right) + 2} \right] = \mathop {\lim }\limits_{n \to + \infty } \frac{{{{5.3}^n} - 1}}{{{3^n}}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{5 - \frac{1}{{{3^n}}}}}{1} = 5\)
Bài 5.9 trang 78 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài toán ứng dụng đạo hàm để giải quyết các vấn đề thực tế. Để giải bài này, học sinh cần nắm vững các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và cách sử dụng đạo hàm để tìm cực trị của hàm số.
Trước khi bắt đầu giải bài, học sinh cần đọc kỹ đề bài để hiểu rõ yêu cầu của bài toán. Xác định rõ hàm số cần xét, khoảng xác định của hàm số, và các điều kiện ràng buộc (nếu có). Trong bài 5.9, đề bài thường yêu cầu tìm giá trị lớn nhất hoặc nhỏ nhất của một hàm số trên một khoảng cho trước.
Ví dụ: Tìm giá trị lớn nhất và nhỏ nhất của hàm số f(x) = x3 - 3x2 + 2 trên đoạn [-1; 3].
Đạo hàm có rất nhiều ứng dụng trong thực tế, như:
Hy vọng hướng dẫn chi tiết này sẽ giúp bạn giải bài 5.9 trang 78 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống một cách dễ dàng và hiệu quả. Chúc bạn học tốt!