Bài 6.60 trang 23 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Hãy cùng theo dõi lời giải chi tiết dưới đây để hiểu rõ phương pháp giải bài tập này nhé!
Cent âm nhạc là một đơn vị trong thang lôgarit của cao độ hoặc khoảng tương đối.
Đề bài
Cent âm nhạc là một đơn vị trong thang lôgarit của cao độ hoặc khoảng tương đối. Một quãng tám bằng 1200 cent. Công thức xác định chênh lệch khoảng thời gian (tính bằng cent) giữa hai nốt nhạc có tần số a và \(b\) là
\(n = 1200 \cdot {\rm{lo}}{{\rm{g}}_2}\frac{a}{b}{\rm{\;}}{\rm{.}}\)
(Theo Algebra 2, NXB MacGraw-Hill, 2008)
a) Tìm khoảng thời gian tính bằng cent khi tần số thay đổi từ \(443{\rm{\;Hz}}\) về \(415{\rm{\;Hz}}\).
b) Giả sử khoảng thời gian là 55 cent và tần số đầu là \(225{\rm{\;Hz}}\), hãy tìm tần số cuối cùng.
Phương pháp giải - Xem chi tiết
a) Tính \(n = 1200 \cdot {\rm{lo}}{{\rm{g}}_2}\frac{a}{b}{\rm{\;}}\) khi \(a = 443{\rm{\;Hz}}\) và \(b = 415{\rm{\;Hz}}\)
b) Giải phương trình \(55 = 1200 \cdot {\rm{lo}}{{\rm{g}}_2}\frac{{225}}{b}\), ta được \(b\).
Lời giải chi tiết
a) Khoảng thời gian giữa hai nốt nhạc khi tần số thay đổi từ \(443{\rm{\;Hz}}\) về \(415{\rm{\;Hz}}\)
là \(1200 \cdot {\rm{lo}}{{\rm{g}}_2}\frac{{443}}{{415}} \approx 113\) (cent).
b) Giải phương trình \(55 = 1200 \cdot {\rm{lo}}{{\rm{g}}_2}\frac{{225}}{b}\), ta được \(b \approx 218\).
Vậy tần số cuối cùng cần tìm là \(218{\rm{\;Hz}}\).
Bài 6.60 trang 23 sách bài tập Toán 11 Kết nối tri thức yêu cầu học sinh vận dụng kiến thức về đạo hàm để tìm cực trị của hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần thực hiện các bước sau:
Để minh họa, chúng ta sẽ xét một ví dụ cụ thể. Giả sử hàm số cần khảo sát là f(x) = x3 - 3x2 + 2.
Khoảng | x < 0 | 0 < x < 2 | x > 2 |
---|---|---|---|
f'(x) | + | - | + |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Ngoài bài 6.60, sách bài tập Toán 11 Kết nối tri thức còn nhiều bài tập khác liên quan đến đạo hàm và ứng dụng của đạo hàm. Để nắm vững kiến thức, bạn nên luyện tập thêm các bài tập sau:
Việc hiểu rõ các bước giải bài tập về đạo hàm sẽ giúp bạn tự tin giải quyết các bài toán phức tạp hơn trong chương trình Toán 11 và các chương trình học nâng cao.
Khi giải bài tập về đạo hàm, bạn cần lưu ý một số điểm sau:
Giaitoan.edu.vn là website học toán online uy tín, cung cấp lời giải chi tiết, dễ hiểu cho các bài tập Toán từ lớp 6 đến lớp 12. Chúng tôi luôn cập nhật nội dung mới nhất và cung cấp các phương pháp giải bài tập hiệu quả, giúp bạn học Toán một cách dễ dàng và thú vị.