Bài 6.15 trang 10 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và các phép toán vectơ. Bài tập này thường yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.15 trang 10 sách bài tập Toán 11 Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tìm \({\rm{lo}}{{\rm{g}}_{49}}32\), biết \({\rm{lo}}{{\rm{g}}_2}14 = a\).
Đề bài
Tìm \({\rm{lo}}{{\rm{g}}_{49}}32\), biết \({\rm{lo}}{{\rm{g}}_2}14 = a\).
Phương pháp giải - Xem chi tiết
Phân tích \(48\) theo thừa số nguyên tố rồi áp dụng quy tắc tính logarit,đổi cơ số của lôgarit\({\log _a}M = \frac{{{{\log }_b}M}}{{{{\log }_b}a}}\),\({\log _a}b = \frac{1}{{{{\log }_b}a}}\)
Giả sử a là số thực dương khác \(1,\,M\) và \(N\) là các số thực dương, \(\alpha \) là số thực tuỳ ý.
\(\begin{array}{l}{\log _a}(MN) = {\log _a}M + {\log _a}N;\\{\log _a}\left( {\frac{M}{N}} \right) = {\log _a}M - {\log _a}N;\\{\log _a}{M^a} = \alpha {\log _a}M.\end{array}\)
Lời giải chi tiết
Ta có: \({\rm{lo}}{{\rm{g}}_{49}}32 = {\rm{lo}}{{\rm{g}}_{49}}{2^5} = 5{\rm{lo}}{{\rm{g}}_{49}}2 = \frac{5}{{{\rm{lo}}{{\rm{g}}_2}49}} = \frac{5}{{{\rm{lo}}{{\rm{g}}_2}{7^2}}} = \frac{5}{2} \cdot \frac{1}{{{\rm{lo}}{{\rm{g}}_2}7}}\)
Do \({\rm{lo}}{{\rm{g}}_2}14 = a\) nên \(a = {\rm{lo}}{{\rm{g}}_2}\left( {7 \cdot 2} \right) = 1 + {\rm{lo}}{{\rm{g}}_2}7 \Rightarrow {\rm{lo}}{{\rm{g}}_2}7 = a - 1\).
Suy ra \({\rm{lo}}{{\rm{g}}_{49}}32 = \frac{5}{2} \cdot \frac{1}{{a - 1}}\)
Bài 6.15 trang 10 sách bài tập Toán 11 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ, thường là xác định mối quan hệ giữa các vectơ hoặc tính toán các phép toán trên vectơ. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài tập, học sinh cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, học sinh cần phân tích bài toán để tìm ra hướng giải phù hợp. Một số phương pháp thường được sử dụng để giải bài tập về vectơ bao gồm:
(Giả sử đề bài là: Cho tam giác ABC. Gọi M là trung điểm của BC. Tìm vectơ AM theo vectơ AB và AC.)
Lời giải:
Ta có: AM = AB + BM
Vì M là trung điểm của BC nên BM = MC = 1/2 BC
Mà BC = AC - AB
Do đó, BM = 1/2 (AC - AB)
Thay vào phương trình ban đầu, ta được:
AM = AB + 1/2 (AC - AB) = 1/2 AB + 1/2 AC
Vậy AM = 1/2 (AB + AC)
Để nắm vững kiến thức về vectơ và các phép toán vectơ, học sinh nên luyện tập thêm các bài tập tương tự. Giaitoan.edu.vn cung cấp một kho bài tập phong phú, đa dạng với lời giải chi tiết, giúp học sinh rèn luyện kỹ năng và tự tin giải các bài tập khó.
Bài 6.15 trang 10 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và các phép toán vectơ. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh sẽ hiểu rõ hơn về bài tập này và tự tin giải các bài tập tương tự.
Khái niệm | Giải thích |
---|---|
Vectơ | Một đoạn thẳng có hướng, xác định bởi điểm đầu và điểm cuối. |
Phép cộng vectơ | Quy tắc hình bình hành hoặc quy tắc tam giác. |
Phép nhân vectơ với một số thực | Thay đổi độ dài của vectơ, giữ nguyên hướng nếu số thực dương, đổi hướng nếu số thực âm. |