Bài 2.42 trang 42 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2.42 trang 42 sách bài tập Toán 11 Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Ba số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, cũng có thể coi là số hạng thứ 2, thứ 9, thứ 44 của một cấp số cộng
Đề bài
Ba số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, cũng có thể coi là số hạng thứ 2, thứ 9, thứ 44 của một cấp số cộng. Hỏi phải lấy bao nhiêu số hạng đầu của cấp số cộng này để tổng của chúng bằng 210.
A. 40
B. 30
C. 20
D. 10.
Phương pháp giải - Xem chi tiết
Sử dụng công thức số hạng tổng quát của cấp số cộng và công thức tính tổng của cấp số cộng \({S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right]\).
Lời giải chi tiết
Đáp án D
Gọi số hạng thứ 2, thứ 9 và thứ 44 của cấp số cộng này là \({u_2},{u_9},\,{u_{44}}\).
\(\begin{array}{l}{u_2} = {u_1} + d,\\{u_9} = {u_1} + 8d = ({u_1} + d) + 7d = {u_2} + 7d\\{u_{44}} = {u_1} + 43d = ({u_1} + d) + 42d = {u_2} + 43d\end{array}\)
Vì 3 số này là các số hạng liên tiếp của một cấp số nhân nên ta có: \({u_2}{u_{44}} = u_9^2\)
Và tổng của 3 số đó là 217 nên \({u_2} + {u_9} + {u_{44}} = 217\).
Vậy ta có hệ \(\left\{ \begin{array}{l}{u_2} + {u_9} + {u_{44}} = 217\\{u_2}{u_{44}} = u_9^2\end{array} \right.\)
Nên \(\left\{ \begin{array}{l}{u_2} + {u_2} + 7d + {u_{42}} + 42d = 217\\{u_2}\left( {{u_2} + 42d} \right) = \left( {{u_2} + 7d} \right)_{}^2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_2} = 7\\d = 4\end{array} \right.(do\,\,d \ne 0)\)
Do đó \({u_1} = {u_2} - d = 3\) và \({S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] = n(2n + 1)\)
Tổng của chúng là 210 nên \(210 = n(2n + 1)\).
Phương trình \(210 = n(2n + 1)\) có nghiệm nguyên dương là \(n = 10\).
Bài 2.42 trang 42 sách bài tập Toán 11 Kết nối tri thức thường xoay quanh việc sử dụng các tính chất của vectơ, đặc biệt là các phép toán cộng, trừ, nhân với một số thực và tích vô hướng. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản và các công thức liên quan.
Trước khi đi vào giải bài tập cụ thể, chúng ta hãy cùng nhau ôn lại một số kiến thức lý thuyết quan trọng:
Để giải bài 2.42 trang 42 sách bài tập Toán 11 Kết nối tri thức, học sinh cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, cần phân tích bài toán để tìm ra hướng giải quyết phù hợp. Thông thường, bài toán sẽ yêu cầu chúng ta:
(Ở đây sẽ là lời giải chi tiết của bài 2.42, bao gồm các bước giải, giải thích rõ ràng và các kết quả tính toán cụ thể. Ví dụ, nếu bài toán yêu cầu tìm tọa độ của vectơ AB, chúng ta sẽ trình bày các bước tính toán như sau:)
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, học sinh có thể tham khảo các bài tập tương tự sau:
Khi giải bài tập về vectơ, học sinh cần lưu ý một số điều sau:
Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin giải bài 2.42 trang 42 sách bài tập Toán 11 Kết nối tri thức và các bài tập tương tự. Chúc các em học tập tốt!
Công thức | Mô tả |
---|---|
AB = (xB - xA; yB - yA) | Tọa độ của vectơ AB |
|AB| = √( (xB - xA)^2 + (yB - yA)^2 ) | Độ dài của vectơ AB |
AB.AC = xA*xB + yA*yB | Tích vô hướng của hai vectơ AB và AC |