Logo Header
  1. Môn Toán
  2. Giải bài 5.32 trang 88 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 5.32 trang 88 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 5.32 trang 88 Sách bài tập Toán 11 - Kết nối tri thức

Bài 5.32 trang 88 sách bài tập Toán 11 thuộc chương trình Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho hàm số \(f(x)\) thỏa mãn \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = 2\)

Đề bài

Cho hàm số \(f(x)\) thỏa mãn \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = 2\) và \(\mathop {\lim }\limits_{x \to {1^ - }} f(x) = m + 1\). Biết giới hạn của \(f(x)\) khi \(x \to 1\) tồn tại. Giá trị của m

A. \(m = 1\)

B. \(m = 2\)

C. \(m = 3\)

D. Không tồn tại m.

Phương pháp giải - Xem chi tiếtGiải bài 5.32 trang 88 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Dựa vào lý thuyết \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L\) để tính ra m.

Lời giải chi tiết

Đáp án A.

Giới hạn của \(f(x)\) khi \(x \to 1\) tồn tại khi và chỉ khi \(\mathop {\lim }\limits_{x \to 1_{}^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\).

Nên \(2 = m + 1 \Rightarrow m = 1.\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 5.32 trang 88 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng toán học. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài viết liên quan

Giải bài 5.32 trang 88 Sách bài tập Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 5.32 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài này, chúng ta cần nắm vững các bước sau:

  1. Xác định tập xác định của hàm số: Tìm khoảng mà hàm số có nghĩa.
  2. Tính đạo hàm bậc nhất: Sử dụng các quy tắc đạo hàm để tìm đạo hàm f'(x).
  3. Tìm điểm dừng: Giải phương trình f'(x) = 0 để tìm các điểm mà đạo hàm bằng không.
  4. Lập bảng biến thiên: Xác định dấu của đạo hàm trên các khoảng xác định để xác định khoảng đồng biến, nghịch biến.
  5. Kết luận về cực trị: Dựa vào bảng biến thiên để xác định các điểm cực đại, cực tiểu.

Lời giải chi tiết bài 5.32 trang 88

Đề bài: (Giả sử đề bài cụ thể của bài 5.32 được đưa ra ở đây. Ví dụ: Khảo sát hàm số y = x3 - 3x2 + 2)

Giải:

  1. Tập xác định: Hàm số y = x3 - 3x2 + 2 có tập xác định là D = ℝ.
  2. Đạo hàm bậc nhất: y' = 3x2 - 6x.
  3. Điểm dừng: Giải phương trình 3x2 - 6x = 0, ta được x = 0 hoặc x = 2.
  4. Bảng biến thiên:

    x-∞02+∞
    y'+-+
    y
  5. Kết luận: Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại x = 0, y = 2 và đạt cực tiểu tại x = 2, yCT = -2.

Các lưu ý khi giải bài tập về khảo sát hàm số

  • Luôn kiểm tra kỹ tập xác định của hàm số.
  • Tính đạo hàm chính xác và cẩn thận.
  • Lập bảng biến thiên một cách khoa học và rõ ràng.
  • Kết luận về cực trị dựa trên bảng biến thiên.
  • Nắm vững các quy tắc đạo hàm cơ bản.

Ứng dụng của việc khảo sát hàm số

Khảo sát hàm số là một kỹ năng quan trọng trong toán học, có nhiều ứng dụng trong thực tế, như:

  • Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số.
  • Giải các bài toán tối ưu hóa.

Luyện tập thêm

Để nắm vững kiến thức về khảo sát hàm số, các em nên luyện tập thêm các bài tập tương tự trong sách bài tập và các đề thi thử. Giaitoan.edu.vn cung cấp nhiều bài tập luyện tập khác với lời giải chi tiết, giúp các em củng cố kiến thức và nâng cao kỹ năng giải toán.

Kết luận

Bài 5.32 trang 88 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn cụ thể trên đây, các em học sinh sẽ tự tin giải bài tập này và các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 11