Bài 5.7 trang 78 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập này.
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{\cos n}}{{{n^2}}}.\) Tìm \(\mathop {\lim }\limits_{n \to + \infty } {u_n}\).
Đề bài
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{\cos n}}{{{n^2}}}.\) Tìm \(\mathop {\lim }\limits_{n \to + \infty } {u_n}\).
Phương pháp giải - Xem chi tiết
Ta nói dãy số \(\left( {{u_n}} \right)\) có giới hạn là 0 khi n dần tới dương vô cực, nếu \(\left| {{u_n}} \right|\) có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi, kí hiệu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\) hay \({u_n} \to + \infty \) khi \(n \to + \infty \).
Lời giải chi tiết
Ta có: \(\left| {{u_n}} \right| = \left| {\frac{{\cos n}}{{{n^2}}}} \right| \le \frac{1}{{{n^2}}}\). Do \(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^2}}} = 0\) nên \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\)
Bài 5.7 trang 78 sách bài tập Toán 11 - Kết nối tri thức là một bài toán ứng dụng thực tế của đạo hàm, thường gặp trong các kỳ thi. Để giải bài toán này, học sinh cần nắm vững các kiến thức về:
Dưới đây là hướng dẫn chi tiết cách giải bài 5.7 trang 78 sách bài tập Toán 11 - Kết nối tri thức:
Trước khi bắt đầu giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố sau:
Ví dụ, nếu đề bài yêu cầu tìm giá trị lớn nhất của hàm số f(x) = x^2 - 4x + 3 trên đoạn [0; 2], thì chúng ta cần xác định:
Giả sử chúng ta cần giải bài toán sau:
Tìm giá trị lớn nhất của hàm số f(x) = x^2 - 4x + 3 trên đoạn [0; 2].
Giải:
Khi giải các bài toán ứng dụng đạo hàm, cần lưu ý những điều sau:
Để củng cố kiến thức, bạn có thể thử giải các bài tập tương tự sau:
Bài 5.7 trang 78 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải quyết các bài toán ứng dụng đạo hàm. Hy vọng với hướng dẫn chi tiết này, các bạn học sinh sẽ tự tin hơn khi giải bài tập này.