Bài 9.23 trang 63 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 9.23 trang 63, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho \(f\left( x \right) = - \frac{1}{3}{x^3} + {x^2} + 3x - 1\). Đạo hàm \(f'\left( x \right) > 0\) khi
Đề bài
Cho \(f\left( x \right) = - \frac{1}{3}{x^3} + {x^2} + 3x - 1\). Đạo hàm \(f'\left( x \right) > 0\) khi
A. \(x < - 1\).
B. \(x > 3\).
C. \( - 1 < x < 3\).
D. .
Phương pháp giải - Xem chi tiết
Áp dụng công thức đạo hàm của hàm số
Lời giải chi tiết
\(f'(x) = - {x^2} + 2x + 3\)
\(f'(x) > 0 \Leftrightarrow - {x^2} + 2x + 3 > 0 \Leftrightarrow - 1 < x < 3\)
Bài 9.23 sách bài tập Toán 11 Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ trong không gian. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố sau:
Để giải bài 9.23 trang 63 sách bài tập Toán 11 Kết nối tri thức, chúng ta sẽ thực hiện các bước sau:
Ví dụ, giả sử bài toán yêu cầu tính độ dài của vectơ a = (x1, y1, z1). Khi đó, độ dài của vectơ a được tính theo công thức:
|a| = √(x12 + y12 + z12)
Ngoài bài 9.23, sách bài tập Toán 11 Kết nối tri thức còn có nhiều bài tập tương tự liên quan đến vectơ trong không gian. Các bài tập này thường yêu cầu chúng ta:
Để giải các bài tập về vectơ một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:
Bài 9.23 trang 63 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp chúng ta củng cố kiến thức về vectơ trong không gian. Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin giải quyết bài toán và đạt kết quả tốt trong môn Toán.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!