Logo Header
  1. Môn Toán
  2. Giải bài 1.46 trang 27 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 1.46 trang 27 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 1.46 trang 27 Sách bài tập Toán 11 - Kết nối tri thức

Bài 1.46 trang 27 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.46 trang 27 Sách bài tập Toán 11 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Mệnh đề nào sau đây sai?

Đề bài

Mệnh đề nào sau đây sai?

A. Hàm số \(y = \sin x\cos 2x\) là hàm số tuần hoàn.

B. Hàm số \(y = \sin x\cos 2x\) là hàm số lẻ.

C. Hàm số \(y = x\sin x\) là hàm số tuần hoàn.

D. Hàm số \(y = x\sin x\) là hàm số chẵn.

Phương pháp giải - Xem chi tiếtGiải bài 1.46 trang 27 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Xét tính chẵn lẻ

Bước 1: Tìm tập xác định của hàm số, xét xem với mọi \(x \in D\), \( - x \in D\) hay không.

Bước 2: Xét \(f( - x)\)

+) Nếu \(f( - x) = f(x)\) thì đó là hàm số chẵn.

+) Nếu \(f( - x) = - f(x)\) thì đó là hàm số lẻ.

+) Nếu không rơi vào 2 trường hợp trên thì đó là hàm số không chẵn không lẻ.

Xét tính tuần hoàn

Bước 1: Tập xác định D.

Bước 2: Chứng minh rằng với mọi \(x \in D\), \(x + T \in D\)và \(f(x + T) = f(x)\).

Nếu không tồn tại số T khác không thỏa mãn điều kiện trên, ta kết luận hàm số không tuần hoàn.

Lời giải chi tiết

Đáp án C.

Với hàm \(f(x) = x\sin x\), \(f(x + T) = (x + T)\sin (x + T)\).

\(f(x + T) = f(x) \Leftrightarrow (x + T)\sin (x + T) = x\sin x \Leftrightarrow T = 0\)

Ta không tìm được số T (khác 0) nào để \(f(x + T) = f(x)\forall x\). Vậy đây không phải là hàm tuần hoàn.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 1.46 trang 27 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục Sách bài tập Toán 11 trên nền tảng môn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài viết liên quan

Giải bài 1.46 trang 27 Sách bài tập Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 1.46 trang 27 Sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng.
  • Ứng dụng của vectơ trong hình học: Chứng minh tính chất hình học, giải bài toán về khoảng cách, góc.

Nội dung bài tập 1.46 trang 27

Bài 1.46 thường yêu cầu học sinh thực hiện các thao tác sau:

  1. Xác định các vectơ trong hình.
  2. Thực hiện các phép toán vectơ để tìm các vectơ mới.
  3. Tính tích vô hướng của các vectơ.
  4. Sử dụng tích vô hướng để tính góc giữa hai vectơ hoặc chứng minh các tính chất hình học.

Lời giải chi tiết bài 1.46 trang 27

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 1.46 trang 27, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử bài tập yêu cầu:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SB và mặt phẳng (ABCD).

Lời giải:

  1. Vẽ hình: Vẽ hình chóp S.ABCD và các đường thẳng, mặt phẳng liên quan.
  2. Xác định góc cần tính: Góc giữa đường thẳng SB và mặt phẳng (ABCD) chính là góc giữa SB và hình chiếu của SB lên mặt phẳng (ABCD), tức là góc giữa SB và AB.
  3. Tính độ dài các cạnh: Sử dụng định lý Pitago để tính độ dài SB. SB = √(SA² + AB²) = √(a² + a²) = a√2.
  4. Tính góc: Tính góc SBA bằng công thức sin(SBA) = SA/SB = a/(a√2) = 1/√2. Suy ra góc SBA = 45°.

Vậy, góc giữa đường thẳng SB và mặt phẳng (ABCD) là 45°.

Mẹo giải bài tập vectơ hiệu quả

  • Nắm vững định nghĩa và tính chất của vectơ.
  • Thành thạo các phép toán vectơ.
  • Vẽ hình chính xác và rõ ràng.
  • Sử dụng các công thức và định lý liên quan một cách linh hoạt.
  • Kiểm tra lại kết quả sau khi giải xong.

Ứng dụng của vectơ trong thực tế

Vectơ không chỉ là một khái niệm trừu tượng trong toán học mà còn có nhiều ứng dụng thực tế trong các lĩnh vực khác nhau, như:

  • Vật lý: Biểu diễn vận tốc, gia tốc, lực.
  • Tin học: Xử lý ảnh, đồ họa máy tính.
  • Kỹ thuật: Thiết kế và xây dựng công trình.

Tổng kết

Bài 1.46 trang 27 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong việc học tập môn Toán.

Khái niệmGiải thích
VectơMột đoạn thẳng có hướng, được xác định bởi điểm đầu và điểm cuối.
Tích vô hướngMột phép toán giữa hai vectơ, cho kết quả là một số thực.

Tài liệu, đề thi và đáp án Toán 11