Bài 6.57 trang 22 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.57 trang 22, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho hàm số \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) - \dot 2\).
Đề bài
Cho hàm số \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) - \dot 2\).
a) Tìm tập xác định của hàm số:
b) Tính\(f\left( {40} \right)\). Xác định điểm tương ứng trên đồ thị hàm số.
c) Tìm \(x\) sao cho \(f\left( x \right) = 3\). Xác định điểm tương ứng trên đồ thị hàm số.
d) Tìm giao điếm của đồ thị với trục hoành.
Phương pháp giải - Xem chi tiết
\(f\left( x \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) - 2\)
a) Điều kiện xác định của hàm số là \(2x + 1 > 0\).
b) Tính \(f\left( {40} \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2 \cdot 40 + 1} \right) - 2\).
Điểm tương ứng trên đồ thị hàm số là \(\left( {40;f\left( {40} \right)} \right)\).
c)\(f\left( x \right) = 3 \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) - 2 = 3\). Giải phương trình tìm \(x\)
Điềm tương ứng trên đồ thị hàm số là \(\left( {x;3} \right)\).
d) Gọi \(A\left( {{x_0};0} \right)\) là giao điểm của đồ thị hàm số \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) - 2\) với trục hoành. Khi đó \({\rm{lo}}{{\rm{g}}_3}\left( {2{x_0} + 1} \right) - 2 = 0\). Giải phương trình tìm được \({x_0}\)
Giao điểm cần tìm là \(\left( {{x_0};0} \right)\)
Lời giải chi tiết
\(f\left( x \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) - 2\)
a) Tập xác định của hàm số là \(\left( { - \frac{1}{2}; + \infty } \right)\).
b) \(f\left( {40} \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2 \cdot 40 + 1} \right) - 2 = 2\).
Điểm tương ứng trên đồ thị hàm số là \(\left( {40;2} \right)\).
c) \(f\left( x \right) = 3 \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) - 2 = 3 \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) = 5 \Leftrightarrow 2x + 1 = {3^5} \Leftrightarrow x = 121\).
Điềm tương ứng trên đồ thị hàm số là \(\left( {121;3} \right)\).
d) Gọi \(A\left( {{x_0};0} \right)\) là giao điểm của đồ thị hàm số \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) - 2\) với trục hoành. Khi đó \({\rm{lo}}{{\rm{g}}_3}\left( {2{x_0} + 1} \right) - 2 = 0 \Leftrightarrow 2{x_0} + 1 = 9 \Leftrightarrow {x_0} = 4\).
Vậy giao điểm cần tìm là \(\left( {4;0} \right)\).
Bài 6.57 trang 22 sách bài tập Toán 11 - Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vị trí tương đối giữa đường thẳng và mặt phẳng trong không gian. Để giải bài toán này, chúng ta cần nắm vững các kiến thức cơ bản về:
Đề bài: (Giả sử đề bài cụ thể của bài 6.57 được đưa ra ở đây. Ví dụ: Cho hình chóp S.ABCD, đáy là hình vuông cạnh a, SA vuông góc với đáy và SA = a. Gọi M là trung điểm của CD. Chứng minh rằng SM vuông góc với mặt phẳng (ABCD).)
Để giải bài toán này, chúng ta thực hiện các bước sau:
Ví dụ minh họa (dựa trên đề bài giả định):
Ta có: SA vuông góc với (ABCD) (theo giả thiết). Mà M là trung điểm của CD nên M thuộc (ABCD). Do đó, SA vuông góc với SM. Xét tam giác SAM vuông tại S, ta có SM là cạnh huyền. Vì ABCD là hình vuông cạnh a, nên AM = √(AD^2 + DM^2) = √(a^2 + (a/2)^2) = (a√5)/2. Áp dụng định lý Pitago cho tam giác SAM, ta có SM = √ (SA^2 + AM^2) = √ (a^2 + (5a^2)/4) = (a√9)/2 = (3a)/2.
Vậy, SM vuông góc với mặt phẳng (ABCD) (đã được chứng minh ở trên).
Ngoài bài 6.57, còn rất nhiều bài tập tương tự trong sách bài tập Toán 11 - Kết nối tri thức. Các bài tập này thường yêu cầu học sinh:
Để giải các bài tập về đường thẳng và mặt phẳng trong không gian một cách hiệu quả, bạn nên:
Để học Toán 11 hiệu quả hơn, bạn có thể tham khảo các tài liệu sau:
Hy vọng với hướng dẫn chi tiết này, các bạn học sinh sẽ hiểu rõ hơn về cách giải bài 6.57 trang 22 sách bài tập Toán 11 - Kết nối tri thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các bạn trên con đường chinh phục môn Toán!