Logo Header
  1. Môn Toán
  2. Giải bài 9.1 trang 57 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 9.1 trang 57 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 9.1 trang 57 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống

Bài 9.1 trang 57 sách bài tập Toán 11 thuộc chương trình học Toán 11 Kết nối tri thức với cuộc sống. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Tính (bằng định nghĩa) đạo hàm của hàm số \(y = 2{x^2} + 3x - 1\) tại điểm \({x_0} = 1\)

Đề bài

Tính (bằng định nghĩa) đạo hàm của hàm số \(y = 2{x^2} + 3x - 1\) tại điểm \({x_0} = 1\)

Phương pháp giải - Xem chi tiếtGiải bài 9.1 trang 57 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Để tính đạo hàm của hàm số \(y = f(x)\) tại điểm \({x_0} \in (a;b)\), ta thực hiện theo các bước sau:

1. Tính \(f(x) - f\left( {{x_0}} \right)\).

2. Lập và rút gọn tỉ số \(\frac{{f(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) với \(x \in (a;b),x \ne {x_0}\).

3. Tìm giới hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).

Lời giải chi tiết

\(y'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{2{x^2} + 3x - 1 - 4}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{2{x^2} + 3x - 5}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)(2x + 5)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (2x + 5) = 7\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 9.1 trang 57 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng toán math. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 9.1 trang 57 Sách bài tập Toán 11 - Kết nối tri thức với cuộc sống: Hướng dẫn chi tiết

Bài 9.1 trang 57 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh tính đạo hàm của hàm số, tìm cực trị của hàm số, hoặc giải các bài toán liên quan đến tốc độ thay đổi.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài tập, học sinh cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp học sinh lựa chọn phương pháp giải phù hợp và tránh sai sót trong quá trình giải.

Các kiến thức cần nắm vững để giải bài 9.1

  • Định nghĩa đạo hàm: Hiểu rõ khái niệm đạo hàm của hàm số tại một điểm và đạo hàm của hàm số trên một khoảng.
  • Các quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của tổng, hiệu, tích, thương của các hàm số, đạo hàm của hàm hợp.
  • Đạo hàm của các hàm số cơ bản: Biết đạo hàm của các hàm số cơ bản như hàm số đa thức, hàm số lượng giác, hàm số mũ, hàm số logarit.
  • Ứng dụng của đạo hàm: Hiểu cách sử dụng đạo hàm để tìm cực trị của hàm số, khảo sát hàm số, giải các bài toán liên quan đến tốc độ thay đổi.

Lời giải chi tiết bài 9.1 trang 57

(Nội dung lời giải chi tiết bài 9.1 trang 57 sẽ được trình bày ở đây, bao gồm các bước giải cụ thể, giải thích rõ ràng và các ví dụ minh họa. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải toán.)

Ví dụ minh họa và bài tập tương tự

Để giúp học sinh hiểu rõ hơn về cách giải bài tập, chúng ta sẽ xem xét một số ví dụ minh họa và bài tập tương tự. Các ví dụ này sẽ giúp học sinh rèn luyện kỹ năng giải toán và áp dụng kiến thức đã học vào thực tế.

Ví dụ 1: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải: f'(x) = 3x2 + 4x - 5.

Bài tập tương tự: Tính đạo hàm của hàm số g(x) = 2x4 - x3 + 3x - 7.

Lưu ý khi giải bài tập về đạo hàm

  • Luôn kiểm tra lại kết quả sau khi giải bài tập.
  • Sử dụng máy tính cầm tay để kiểm tra lại các phép tính.
  • Tham khảo các tài liệu học tập và tìm kiếm sự giúp đỡ từ giáo viên hoặc bạn bè nếu gặp khó khăn.

Tổng kết

Bài 9.1 trang 57 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Bằng cách nắm vững các kiến thức cần thiết và luyện tập thường xuyên, học sinh có thể giải quyết bài tập một cách dễ dàng và hiệu quả.

Giaitoan.edu.vn hy vọng rằng với lời giải chi tiết và hướng dẫn cụ thể này, các em học sinh sẽ có thể tự tin giải quyết bài tập và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 11