Bài 9.12 trang 60 sách bài tập Toán 11 thuộc chương trình Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 9.12, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho hàm số \(f(x) = {\cos ^2}x + {\cos ^2}\left( {\frac{{2\pi }}{3} + x} \right) + {\cos ^2}\left( {\frac{{2\pi }}{3} - x} \right)\).
Đề bài
Cho hàm số \(f(x) = {\cos ^2}x + {\cos ^2}\left( {\frac{{2\pi }}{3} + x} \right) + {\cos ^2}\left( {\frac{{2\pi }}{3} - x} \right)\). Tính đạo hàm \(f'\left( x \right)\) và chứng tỏ \(f'\left( x \right) = 0\) với mọi \(x \in \mathbb{R}\).
Phương pháp giải - Xem chi tiết
Áp dụng quy tắc đạo hàm của hàm số lượng giác và hàm hợp
\({\left( {{{\sin }^n}u} \right)^\prime } = u'.n{\sin ^{n - 1}}u.\cos u;\)
\({\left( {{{\cos }^n}u} \right)^\prime } = - u'.n{\cos ^{n - 1}}u.\sin u;\)
Sử dụng công thức lượng giác
\({\rm{sin}}\left( {a + b} \right) = \sin a.\cos b + \cos a.\sin b\)
\({\rm{sin}}\left( {a - b} \right) = \sin a.\cos b - \cos a.\sin b\)
Lời giải chi tiết
\(f'\left( x \right) - 2\cos x\sin x - 2\cos \left( {\frac{{2\pi }}{3} + x} \right)\sin \left( {\frac{{2\pi }}{3} + x} \right) + 2\cos \left( {\frac{{2\pi }}{3} - x} \right)\sin \left( {\frac{{2\pi }}{3} - x} \right)\)
\( = - \sin \,2x - \sin \left( {\frac{{4\pi }}{3} + 2x} \right) + \sin \left( {\frac{{4\pi }}{3} - 2x} \right)\)
\( = - \sin \,2x + \sin \left( {\frac{\pi }{3} + 2x} \right) - \sin \left( {\frac{\pi }{3} - 2x} \right)\)
\( = - \sin \,2x + 2\cos \frac{\pi }{3}\sin \,2x\)
\( = - \sin \,2x + \sin \,2x = 0\).
Bài 9.12 yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học phẳng. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi đi vào giải chi tiết, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố quan trọng. Thông thường, bài toán sẽ cho trước một số điểm, đường thẳng hoặc hình dạng hình học nào đó. Nhiệm vụ của chúng ta là sử dụng kiến thức về vectơ để tìm ra các thông tin cần thiết, chẳng hạn như:
(Ở đây sẽ là lời giải chi tiết bài 9.12, bao gồm các bước giải, giải thích rõ ràng và sử dụng hình vẽ minh họa nếu cần thiết. Ví dụ, nếu bài toán yêu cầu tìm tọa độ điểm D sao cho ABCD là hình bình hành, lời giải sẽ trình bày các bước tìm tọa độ D dựa trên tính chất của hình bình hành và các phép toán vectơ.)
Để giúp các em hiểu rõ hơn về cách giải bài toán, chúng ta sẽ xem xét một ví dụ minh họa:
Ví dụ: Cho A(1;2), B(3;4), C(5;2). Tìm tọa độ điểm D sao cho ABCD là hình bình hành.
Giải:
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, các em có thể luyện tập thêm các bài tập tương tự trong sách bài tập Toán 11 Kết nối tri thức. Ngoài ra, các em cũng có thể tìm kiếm các bài tập trực tuyến trên các trang web học toán uy tín.
Bài 9.12 trang 60 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bằng cách nắm vững các kiến thức cơ bản và thực hành giải nhiều bài tập, các em sẽ tự tin hơn trong việc giải quyết các bài toán tương tự.
Công thức | Mô tả |
---|---|
overrightarrow{AB} = (x_B - x_A; y_B - y_A) | Tọa độ của vectơ AB |
overrightarrow{a} + overrightarrow{b} = (x_a + x_b; y_a + y_b) | Phép cộng vectơ |
k * overrightarrow{a} = (k*x_a; k*y_a) | Phép nhân vectơ với một số thực |
overrightarrow{a} . overrightarrow{b} = x_a*x_b + y_a*y_b | Tích vô hướng của hai vectơ |