Bài 4.39 trang 68 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.39 trang 68, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
. Khi cắt một chiếc bánh gato hình hộp, Thúy nhận thấy vết cắt ở mặt trên và mặt dưới của bánh gợi nên hình ảnh về hai đường thẳng song song với nhau.
Đề bài
Khi cắt một chiếc bánh gato hình hộp, Thúy nhận thấy vết cắt ở mặt trên và mặt dưới của bánh gợi nên hình ảnh về hai đường thẳng song song với nhau. Hỏi nhận xét của Thúy có đúng không? Vì sao?
Phương pháp giải - Xem chi tiết
Cho hai mặt phẳng song song, nếu một mặt phẳng cắt mặt phẳng này thì cũng cắt mặt phẳng kia và hai giao tuyến song song với nhau.
Lời giải chi tiết
Khi Thúy cắt bánh thì lưỡi dao di chuyển tạo thành một mặt phẳng cắt hai mặt trên và dưới của chiếc bánh. Vì mặt trên và mặt dưới của chiếc bánh song song với nhau nên các vết cắt (chính là giao tuyến của mặt phẳng cắt và hai mặt bánh) song song với nhau.
Bài 4.39 trang 68 sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản như:
Dưới đây là lời giải chi tiết bài 4.39 trang 68 sách bài tập Toán 11 - Kết nối tri thức:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).
Bước 1: Xác định các yếu tố cần thiết
Để tính góc giữa đường thẳng SC và mặt phẳng (ABCD), ta cần xác định hình chiếu của điểm S lên mặt phẳng (ABCD). Vì SA vuông góc với (ABCD) nên A là hình chiếu của S lên (ABCD).
Bước 2: Tính độ dài các cạnh
Ta có: AC = a√2 (đường chéo hình vuông)
SC = √(SA² + AC²) = √(a² + (a√2)²) = √(a² + 2a²) = a√3
Bước 3: Tính góc giữa SC và mặt phẳng (ABCD)
Gọi α là góc giữa đường thẳng SC và mặt phẳng (ABCD). Ta có:
tan α = SA / AC = a / (a√2) = 1/√2
α = arctan(1/√2) ≈ 35.26°
Kết luận: Góc giữa đường thẳng SC và mặt phẳng (ABCD) là khoảng 35.26°.
Bài tập này yêu cầu học sinh vận dụng kiến thức về hình học không gian, đặc biệt là các khái niệm về góc giữa đường thẳng và mặt phẳng. Để giải bài tập này một cách hiệu quả, học sinh cần:
Ngoài ra, học sinh có thể tham khảo thêm các bài tập tương tự để rèn luyện kỹ năng giải toán. Việc hiểu rõ bản chất của bài toán và các kiến thức liên quan sẽ giúp học sinh tự tin giải quyết các bài tập khó hơn.
Để củng cố kiến thức về góc giữa đường thẳng và mặt phẳng, học sinh có thể giải các bài tập sau:
Giaitoan.edu.vn hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, các em học sinh sẽ hiểu rõ hơn về bài 4.39 trang 68 sách bài tập Toán 11 - Kết nối tri thức và tự tin hơn trong quá trình học tập. Chúc các em học tốt!
Khái niệm | Giải thích |
---|---|
Góc giữa đường thẳng và mặt phẳng | Là góc giữa đường thẳng đó và hình chiếu của nó trên mặt phẳng. |
Hình chiếu của điểm lên mặt phẳng | Là điểm trên mặt phẳng sao cho đường thẳng đi qua điểm đó và vuông góc với mặt phẳng. |