Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 10 trang 67 sách bài tập Toán 11 - Kết nối tri thức. Bài viết này sẽ giúp bạn hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tự tin chinh phục môn Toán.
Tập nghiệm của bất phương trình \({\left( {\frac{1}{2}} \right)^{2{x^2} - x + 1}} \le {\left( {\frac{1}{4}} \right)^x}\) là
Đề bài
Tập nghiệm của bất phương trình \({\left( {\frac{1}{2}} \right)^{2{x^2} - x + 1}} \le {\left( {\frac{1}{4}} \right)^x}\) là
A. \(\left[ {\frac{1}{2};1} \right]\).
B. \(\left( { - \infty ;\frac{1}{2}} \right] \cup \left[ {1; + \infty } \right)\).
C. \(\left( {\frac{1}{2};1} \right)\).
D. \(\left( { - \infty ;\frac{1}{2}} \right) \cup \left( {1; + \infty } \right)\).
Phương pháp giải - Xem chi tiết
\({a^x} \le {a^y} \Leftrightarrow x \ge y\,\,khi\,\,a \in \left( {0;1} \right)\)
Lời giải chi tiết
\({\left( {\frac{1}{2}} \right)^{2{x^2} - x + 1}} \le {\left( {\frac{1}{4}} \right)^x} \Leftrightarrow 2{x^2} - x + 1 \ge 2x \Leftrightarrow 2{x^2} - 3x + 1 \ge 0 \Leftrightarrow x \le \frac{1}{2}; \le x \ge 1\) nên
Chọn B
Bài 10 trang 67 sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về tích vô hướng của hai vectơ, góc giữa hai vectơ, và các tính chất liên quan để giải quyết các bài toán hình học không gian.
Bài tập 10 thường bao gồm các dạng câu hỏi sau:
Để giải quyết bài tập 10 trang 67 một cách hiệu quả, bạn cần nắm vững các kiến thức và phương pháp sau:
Ví dụ: Cho hai vectơ a = (1; 2; 3) và b = (-2; 1; 0). Tính tích vô hướng của a và b, và xác định góc giữa hai vectơ này.
Giải:
Tích vô hướng của a và b là:
a.b = (1)(-2) + (2)(1) + (3)(0) = -2 + 2 + 0 = 0
Vì a.b = 0, nên hai vectơ a và b vuông góc với nhau.
Để củng cố kiến thức và kỹ năng giải bài tập, bạn có thể luyện tập thêm với các bài tập tương tự trong sách bài tập Toán 11 - Kết nối tri thức, hoặc tìm kiếm trên các trang web học toán online.
Khi giải bài tập về vectơ trong không gian, hãy chú ý:
Bài 10 trang 67 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp bạn rèn luyện kỹ năng vận dụng kiến thức về vectơ trong không gian. Hy vọng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả.
Công thức | Mô tả |
---|---|
a.b = |a||b|cos(θ) | Tích vô hướng của hai vectơ |
a.b = 0 | Điều kiện hai vectơ vuông góc |